Advertisement

Biochemistry (Moscow)

, 76:1079 | Cite as

Pleiotropic functions of brain proteinases: Methodological considerations and search for caspase substrates

  • A. A. Yakovlev
  • N. V. GulyaevaEmail author
Review

Abstract

Analysis of the literature and our own data suggest that the so-called “apoptotic” proteinases play important roles in brain function. However, mechanisms of their involvement in normal neuronal plasticity remain obscure. One of the main reasons for this is broad substrate specificity of proteinases; the number of potential substrates of each can reach several thousands. Obviously, a real approach to study functions of “apoptotic” proteinases, caspase-3 in particular, is to identify their intracellular substrates. It is the nature of a substrate that defines the direction of signal transduction or metabolic changes; therefore, identification of molecular partners of particular proteases should be the key study, not just measuring its activity or respective protein or mRNA expression. This approach will allow studying regulatory mechanisms not only for proteinases, but also for other pleiotropic enzymes usually possessing broad substrate specificity.

Key words

proteinases caspase proteinase substrates broad substrate specificity plasticity apoptosis brain 

References

  1. 1.
    Troy, C. M., and Salvesen, G. S. (2002) J. Neurosci. Res., 69, 145–150.PubMedCrossRefGoogle Scholar
  2. 2.
    Vandenabeele, P., Vanden Berghe, T., and Festjens, N. (2006) Sci. STKE, pe44.Google Scholar
  3. 3.
    Gulyaeva, N. V., Kudryashov, I. E., and Kudryashova, I. V. (2003) J. Neurosci. Res., 73, 853–864.PubMedCrossRefGoogle Scholar
  4. 4.
    Dash, P. K., Blum, S., and Moore, A. N. (2000) Neuroreport, 11, 2811–2816.PubMedCrossRefGoogle Scholar
  5. 5.
    Li, Z., Jo, J., Jia, J. M., Lo, S. C., Whitcomb, D. J., Jiao, S., Cho, K., and Sheng, M. (2010) Cell, 141, 859–871.PubMedCrossRefGoogle Scholar
  6. 6.
    Bingo, B., and Sheng, M. (2011) Neuron, 69, 22–32.CrossRefGoogle Scholar
  7. 7.
    Urase, K., Kouroku, Y., Fujita, E., and Momoi, T. (2003) Brain Res. Dev. Brain Res., 145, 241–248.PubMedCrossRefGoogle Scholar
  8. 8.
    Stepanichev, M. Y., Kudryashova, I. V., Yakovlev, A. A., Onufriev, M. V., Khaspekov, L. G., Lyzhin, A. A., Lazareva, N. A., and Gulyaeva, N. V. (2005) Neuroscience, 136, 579–591.PubMedCrossRefGoogle Scholar
  9. 9.
    Earnshaw, W. C., Martins, L. M., and Kaufmann, S. H. (1999) Annu. Rev. Biochem., 68, 383–424.PubMedCrossRefGoogle Scholar
  10. 10.
    Mok, J., Im, H., and Snyder, M. (2009) Nat. Protoc., 4, 1820–1827.PubMedCrossRefGoogle Scholar
  11. 11.
    McStay, G. P., Salvesen, G. S., and Green, D. R. (2008) Cell Death Differ., 15, 322–331.PubMedCrossRefGoogle Scholar
  12. 12.
    Salvesen, G. S. (2002) Essays Biochem., 38, 9–19.PubMedGoogle Scholar
  13. 13.
    Cho, Y. S., Park, S. Y., Shin, H. S., and Chan, F. K. (2010) Mol. Cells, 29, 327–332.PubMedCrossRefGoogle Scholar
  14. 14.
    Gulyaeva, N. V. (2003) Biochemistry (Moscow), 68, 1171–1180.CrossRefGoogle Scholar
  15. 15.
    Algeciras-Schimnich, A., Barnhart, B. C., and Peter, M. E. (2002) Curr. Opin. Cell. Biol., 14, 721–726.PubMedCrossRefGoogle Scholar
  16. 16.
    Zermati, Y., Garrido, C., Amsellem, S., Fishelson, S., Bouscary, D., Valensi, F., Varet, B., Solary, E., and Hermine, O. (2001) J. Exp. Med., 193, 247–254.PubMedCrossRefGoogle Scholar
  17. 17.
    Lee, A., Morrow, J. S., and Fowler, V. M. (2001) J. Biol. Chem., 276, 20735–20742.PubMedCrossRefGoogle Scholar
  18. 18.
    Okuyama, R., Nguyen, B. C., Talora, C., Ogawa, E., Tommasi di Vignano, A., Lioumi, M., Chiorino, G., Tagami, H., Woo, M., and Dotto, G. P. (2004) Dev. Cell, 6, 551–562.PubMedCrossRefGoogle Scholar
  19. 19.
    Dix, M. M., Simon, G. M., and Cravatt, B. F. (2008) Cell, 134, 679–691.PubMedCrossRefGoogle Scholar
  20. 20.
    Fernando, P., Kelly, J. F., Balazsi, K., Slack, R. S., and Megeney, L. A. (2002) Proc. Natl. Acad. Sci. USA, 99, 11025–11030.PubMedCrossRefGoogle Scholar
  21. 21.
    DeChant, A. K., Dee, K., and Weyman, C. M. (2002) Oncogene, 21, 5268–5279.PubMedCrossRefGoogle Scholar
  22. 22.
    De Botton, S., Sabri, S., Daugas, E., Zermati, Y., Guidotti, J. E., Hermine, O., Kroemer, G., Vainchenker, W., and Debili, N. (2002) Blood, 100, 1310–1317.PubMedCrossRefGoogle Scholar
  23. 23.
    Sordet, O., Rebe, C., Plenchette, S., Zermati, Y., Hermine, O., Vainchenker, W., Garrido, C., Solary, E., and Dubrez-Daloz, L. (2002) Blood, 100, 4446–4453.PubMedCrossRefGoogle Scholar
  24. 24.
    Cathelin, S., Rebe, C., Haddaoui, L., Simioni, N., Verdier, F., Fontenay, M., Launay, S., Mayeux, P., and Solary, E. (2006) J. Biol. Chem., 281, 17779–17788.PubMedCrossRefGoogle Scholar
  25. 25.
    Mogi, M., and Togari, A. (2003) J. Biol. Chem., 278, 47477–47482.PubMedCrossRefGoogle Scholar
  26. 26.
    Oomman, S., Strahlendorf, H., Dertien, J., and Strahlendorf, J. (2006) Brain Res., 1078, 19–34.PubMedCrossRefGoogle Scholar
  27. 27.
    Oomman, S., Strahlendorf, H., Finckbone, V., and Strahlendorf, J. (2005) Brain Res. Dev. Brain Res., 160, 130–145.PubMedCrossRefGoogle Scholar
  28. 28.
    Fernando, P., Brunette, S., and Megeney, L. A. (2005) FASEB J., 19, 1671–1673.PubMedGoogle Scholar
  29. 29.
    Santambrogio, L., Potolicchio, I., Fessler, S. P., Wong, S. H., Raposo, G., and Strominger, J. L. (2005) Nat. Immunol., 6, 1020–1028.PubMedCrossRefGoogle Scholar
  30. 30.
    Kim, M., Murphy, K., Liu, F., Parker, S. E., Dowling, M. L., Baff, W., and Kao, G. D. (2005) Mol. Cell Biol., 25, 9232–9248.PubMedCrossRefGoogle Scholar
  31. 31.
    Hsu, S. L., Yu, C. T., Yin, S. C., Tang, M. J., Tien, A. C., Wu, Y. M., and Huang, C. Y. (2006) Apoptosis, 11, 765–771.PubMedCrossRefGoogle Scholar
  32. 32.
    Cowan, K. N., Leung, W. C., Mar, C., Bhattacharjee, R., Zhu, Y., and Rabinovitch, M. (2005) FASEB J., 19, 1848–1850.PubMedGoogle Scholar
  33. 33.
    Krebs, J. F., Srinivasan, A., Wong, A. M., Tomaselli, K. J., Fritz, L. C., and Wu, J. C. (2000) Biochemistry, 39, 16056–16063.PubMedCrossRefGoogle Scholar
  34. 34.
    Denault, J. B., and Salvesen, G. S. (2003) J. Biol. Chem., 278, 34042–34050.PubMedCrossRefGoogle Scholar
  35. 35.
    Pelletier, M., Cartron, P. F., Delaval, F., Meflah, K., Vallette, F. M., and Oliver, L. (2004) Biochem. Biophys. Res. Commun., 316, 93–99.PubMedCrossRefGoogle Scholar
  36. 36.
    Ditzel, M., Broemer, M., Tenev, T., Bolduc, C., Lee, T. V., Rigbolt, K. T., Elliott, R., Zvelebil, M., Blagoev, B., Bergmann, A., and Meier, P. (2008) Mol. Cell, 32, 540–553.PubMedCrossRefGoogle Scholar
  37. 37.
    Pelletier, M., Oliver, L., Meflah, K., and Vallette, F. M. (2005) FEBS Lett., 579, 2364–2368.PubMedCrossRefGoogle Scholar
  38. 38.
    Faleiro, L., Kobayashi, R., Fearnhead, H., and Lazebnik, Y. (1997) EMBO J., 16, 2271–2281.PubMedCrossRefGoogle Scholar
  39. 39.
    Miller, M. A., Karacay, B., Zhu, X., O’Dorisio, M. S., and Sandler, A. D. (2006) Apoptosis, 11, 15–24.PubMedCrossRefGoogle Scholar
  40. 40.
    Beaujouin, M., Baghdiguian, S., Glondu-Lassis, M., Berchem, G., and Liaudet-Coopman, E. (2006) Oncogene, 25, 1967–1973.PubMedCrossRefGoogle Scholar
  41. 41.
    Yakovlev, A. A., Semenova, T. P., Kolaeva, S. G., Onufriev, M. V., Mikhalev, S. L., and Gulyaeva, N. V. (2002) Neirokhimiya, 19, 33–36.Google Scholar
  42. 42.
    Popov, V. I., and Bocharova, L. S. (1992) Neuroscience, 48, 53–62.PubMedCrossRefGoogle Scholar
  43. 43.
    Popov, V. I., Bocharova, L. S., and Bragin, A. G. (1992) Neuroscience, 48, 45–51.PubMedCrossRefGoogle Scholar
  44. 44.
    Rossiter, J. P., Anderson, L. L., Yang, F., and Cole, G. M. (2000) Neuropathol. Appl. Neurobiol., 26, 342–346.PubMedCrossRefGoogle Scholar
  45. 45.
    Kudryashov, I. E., Yakovlev, A. A., Kudryashova, I., and Gulyaeva, N. V. (2002) Neurosci. Lett., 332, 95–98.PubMedCrossRefGoogle Scholar
  46. 46.
    Dailey, M. E., and Smith, S. J. (1996) J. Neurosci., 16, 2983–2994.PubMedGoogle Scholar
  47. 47.
    Gilman, C. P., and Mattson, M. P. (2002) Neuromolec. Med., 2, 197–214.CrossRefGoogle Scholar
  48. 48.
    Haug, L. S., Walaas, S. I., and Ostvold, A. C. (2000) J. Neurochem., 75, 1852–1861.PubMedCrossRefGoogle Scholar
  49. 49.
    Kudryashov, I. E., Yakovlev, A. A., Kudryashova, I. V., and Gulyaeva, N. V. (2004) Neurosci. Behav. Physiol., 34, 877–880.PubMedCrossRefGoogle Scholar
  50. 50.
    Gemma, C., Fister, M., Hudson, C., and Bickford, P. C. (2005) Eur. J. Neurosci., 22, 1751–1756.PubMedCrossRefGoogle Scholar
  51. 51.
    Lu, C., Wang, Y., Furukawa, K., Fu, W., Ouyang, X., and Mattson, M. P. (2006) J. Neurochem., 97, 1104–1110.PubMedCrossRefGoogle Scholar
  52. 52.
    Ayrapetyanz, M. G., Yakovlev, A. A., Levshina, I. P., Vorontsova, O. N., Stepanichev, M. Y., Onufriev, M. V., Lazareva, N. A., and Gulyaeva, N. V. (2006) Neirokhimiya, 23, 136–142.Google Scholar
  53. 53.
    Yakovlev, A. A., Peregud, D. I., Pirozhkov, S. V., Gulyaeva, N. V., and Panchenko, L. F. (2004) Narkologiya, No. 9, 26–28.Google Scholar
  54. 54.
    Yakovlev, A. A., Peregud, D. I., Egorova, L. K., Panchenko, L. F., and Gulyaeva, N. V. (2003) Neirokhimiya, 20, 265–268.Google Scholar
  55. 55.
    Chan, S. L., Griffin, W. S., and Mattson, M. P. (1999) J. Neurosci. Res., 57, 315–323.PubMedCrossRefGoogle Scholar
  56. 56.
    Meyer, E. L., Gahring, L. C., and Rogers, S. W. (2002) J. Biol. Chem., 277, 10869–10875.PubMedCrossRefGoogle Scholar
  57. 57.
    Campbell, D. S., and Holt, C. E. (2003) Neuron, 37, 939–952.PubMedCrossRefGoogle Scholar
  58. 58.
    Shimohama, S., Tanino, H., and Fujimoto, S. (2001) Biochem. Biophys. Res. Commun., 289, 1063–1066.PubMedCrossRefGoogle Scholar
  59. 59.
    Shimohama, S., Tanino, H., and Fujimoto, S. (2001) Neurosci. Lett., 315, 125–128.PubMedCrossRefGoogle Scholar
  60. 60.
    Yan, X. X., Najbauer, J., Woo, C. C., Dashtipour, K., Ribak, C. E., and Leon, M. (2001) J. Comp. Neurol., 433, 4–22.PubMedCrossRefGoogle Scholar
  61. 61.
    McLaughlin, B., Hartnett, K. A., Erhardt, J. A., Legos, J. J., White, R. F., Barone, F. C., and Aizenman, E. (2003) Proc. Natl. Acad. Sci. USA, 100, 715–720.PubMedCrossRefGoogle Scholar
  62. 62.
    Yakovlev, A. A., Gorokhovatsky, A. Y., Onufriev, M. V., Beletsky, I. P., and Gulyaeva, N. V. (2008) Biochemistry (Moscow), 73, 332–336.CrossRefGoogle Scholar
  63. 63.
    Palmer, M. J., Hull, C., Vigh, J., and von Gersdorff, H. (2003) J. Neurosci., 23, 11332–11341.PubMedGoogle Scholar
  64. 64.
    Shuba, Y. M., Dietrich, C. J., Oermann, E., Cleemann, L., and Morad, M. (2008) Cell Calcium, 44, 220–229.PubMedCrossRefGoogle Scholar
  65. 65.
    Onufriev, M. V., Yakovlev, A. A., Lyzhin, A. A., Stepanichev, M. Y., Khaspekov, L. G., and Gulyaeva, N. V. (2009) Biochemistry (Moscow), 74, 281–287.CrossRefGoogle Scholar
  66. 66.
    Brylev, L. V., Nelkina, E. N., Yakovlev, A. A., Onufriev, M. V., Shabalina, A. A., Kostyreva, M. V., Zakharova, M. N., Zavalishin, I. A., and Gulyaeva, N. V. (2009) Neurochem. J., 3, 133–138.CrossRefGoogle Scholar
  67. 67.
    Brylev, L. V., Yakovlev, A. A., Onufriev, M. V., Zakharova, M. N., Zavalishin, I. A., and Gulyaeva, N. V. (2007) Neurochem. J., 1, 326–333.CrossRefGoogle Scholar
  68. 68.
    Yakovlev, A. A. (2009) Neurochem. J., 3, 139–144.CrossRefGoogle Scholar
  69. 69.
    Yakovlev, A. A., Lyzhin, A. A., Khaspekov, L. G., and Gulyaeva, N. V. (2010) Neurochem. J., 4, 185–188.CrossRefGoogle Scholar
  70. 70.
    Gevaert, K., Goethals, M., Martens, L., van Damme, J., Staes, A., Thomas, G. R., and Vandekerckhove, J. (2003) Nat. Biotechnol., 5, 566–569.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations