Biochemistry (Moscow)

, 76:1051 | Cite as

Differential inhibition/inactivation of mitochondrial complex I implicates its alteration in malignant cells

  • A. Ghosh
  • S. Bera
  • S. Ghosal
  • S. Ray
  • A. Basu
  • M. RayEmail author


Methylglyoxal strongly inhibited mitochondrial respiration of a wide variety of malignant tissues including sarcoma of mice, whereas no such significant effect was noted on mitochondrial respiration of normal tissues with the exception of cardiac cells. This inhibition by methylglyoxal was found to be at the level of mitochondrial complex I (NADH dehydrogenase) of the electron transport chain. L-Lactaldehyde, which is structurally and metabolically related to methylglyoxal, could protect against this inhibition. NADH dehydrogenase of submitochondrial particles of malignant and cardiac cells was inhibited by methylglyoxal. This enzyme of these cells was also inactivated by methylglyoxal. The possible involvement of lysine residue(s) for the activity of NADH dehydrogenase was also investigated by using lysine-specific reagents trinitrobenzenesulfonic acid (TNBS) and pyridoxal 5′ phosphate (PP). Inactivation of NADH dehydrogenase by both TNBS and PP convincingly demonstrated the involvement of lysine residue(s) for the activity of the sarcoma and cardiac enzymes, whereas both TNBS and PP failed to inactivate the enzymes of skeletal muscle and liver. Together these studies demonstrate a specific effect of methylglyoxal on mitochondrial complex I of malignant cells and importantly some distinct alteration of this complex in cancer cells.

Key words

sarcoma NADH dehydrogenase methylglyoxal lactaldehyde 



5,5′-dithiobis(2-nitrobenzoic acid)




Ehrlich ascites carcinoma






pyridoxal 5′ phosphate


submitochondrial particles




trinitrobenzenesulfonic acid


  1. 1.
    Szent-Gyorgyi, A. (1979) Ciba Found. Symp., 67, 3–18.Google Scholar
  2. 2.
    Talukdar, D., Ray, S., Ray, M., and Das, S. (2008) Drug Metab. Drug Interact., 23, 175–210.CrossRefGoogle Scholar
  3. 3.
    Kalapos, M. P. (2008) Drug Metab. Drug Interact., 23, 69–91.CrossRefGoogle Scholar
  4. 4.
    Talukdar, D., Chaudhuri, B. S., Ray, M., and Ray, S. (2009) Biochemistry (Moscow), 74, 1059–1069.CrossRefGoogle Scholar
  5. 5.
    Ray, M., Halder, J., Dutta, S. K., and Ray, S. (1991) Int. J. Cancer, 47, 603–609.PubMedCrossRefGoogle Scholar
  6. 6.
    Ray, S., Dutta, S., Halder, J., and Ray, M. (1994) Biochem. J., 303, 69–72.PubMedGoogle Scholar
  7. 7.
    Biswas, S., Ray, M., Misra, S., Dutta, D. P., and Ray, S. (1997) Biochem. J., 323, 343–348.PubMedGoogle Scholar
  8. 8.
    Ray, S., Biswas, S., and Ray, M. (1997) Mol. Cell. Biochem., 171, 95–103.PubMedCrossRefGoogle Scholar
  9. 9.
    Roy, S. S., Biswas, S., Ray, M., and Ray, S. (2003) Biochem. J., 372, 661–669.PubMedCrossRefGoogle Scholar
  10. 10.
    Patra, S., Bera, S., Roy, S. S., Ghoshal, S., Ray, S., Basu, A., Schlattner, U., Wallimann, T., and Ray, M. (2008) FEBS J., 275, 3236–3247.PubMedCrossRefGoogle Scholar
  11. 11.
    Smith, A. L. (1967) Methods Enzymol., 10, 81–86.CrossRefGoogle Scholar
  12. 12.
    Huff, E., and Rudney, H. (1959) J. Biol. Chem., 234, 1060–1064.PubMedGoogle Scholar
  13. 13.
    Ray, M., and Ray, S. (1984) Biochim. Biophys. Acta, 802, 119–127.PubMedGoogle Scholar
  14. 14.
    Janssen, A. J., Trijbels, F. J., Sengers, R. C., Smeitink, J. A., van den Heuvel, L. P., Wintjes, L. T., Stoltenborg-Hogenkamp, B. J., and Rodenburg, R. J. (2007) Clin. Chem., 53, 729–734.PubMedCrossRefGoogle Scholar
  15. 15.
    Layne, E. (1957) Methods Enzymol., 3, 447–454.CrossRefGoogle Scholar
  16. 16.
    Greig, N., Wyllie, S., Patterson, S., and Fairlamb, A. H. (2009) FEBS J., 276, 376–386.PubMedCrossRefGoogle Scholar
  17. 17.
    Berrisford, J. M., and Sazanov, L. A. (2009) J. Biol. Chem., 284, 29773–29783.PubMedCrossRefGoogle Scholar
  18. 18.
    Hirst, J. (2010) Biochem. J., 425, 327–339.CrossRefGoogle Scholar
  19. 19.
    Grubmeyer, C., Segura, E., and Dorfman, R. (1993) J. Biol. Chem., 268, 20299–20304.PubMedGoogle Scholar
  20. 20.
    Ghosh, S., Mukherjee, K., Ray, M., and Ray, S. (2001) Eur. J. Biochem., 268, 6037–6044.PubMedCrossRefGoogle Scholar
  21. 21.
    Ghosh, A., Bera, S., Ray, S., Banerjee, T., and Ray, M. (2011) Biochemistry (Moscow), 76, 1428–1436 (Russ.).Google Scholar
  22. 22.
    Zu, X. L., and Guppy, M. (2004) Biochem. Biophys. Res. Commun., 313, 459–465.PubMedCrossRefGoogle Scholar
  23. 23.
    Moreno-Sanchez, R., Rodriguez-Enriquez, S., Marin-Hernandez, A., and Saavedra, E. (2007) FEBS J., 274, 1393–1418.PubMedCrossRefGoogle Scholar
  24. 24.
    Rodriguez-Enriquez, S., Torres-Marquez, M. E., and Moreno-Sanchez, R. (2000) Arch. Biochem. Biophys., 375, 21–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Zickermann, V., Kerscher, S., Zwicker, K., Tocilescu, M. A., Radermacher, M., and Brandt, U. (2009) Biochim. Biophys. Acta, 1787, 574–583.PubMedCrossRefGoogle Scholar
  26. 26.
    Vogel, R. O., Smeitink, J. A., and Nijtmans, L. G. (2007) Biochim. Biophys. Acta, 1767, 1215–1227.PubMedCrossRefGoogle Scholar
  27. 27.
    Carroll, J., Fearnley, I. M., Wang, Q., and Walker, J. E. (2009) Anal. Biochem., 395, 249–255.PubMedCrossRefGoogle Scholar
  28. 28.
    Hirst, J., Carroll, J., Fearnley, I. M., Shannon, R. J., and Walker, J. E. (2003) Biochim. Biophys. Acta, 1604, 135–150.PubMedCrossRefGoogle Scholar
  29. 29.
    Carroll, J., Fearnley, I. M., Shannon, R. J., Hirst, J., and Walker, J. E. (2003) Mol. Cell. Proteomics, 2, 117–126.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. Ghosh
    • 1
  • S. Bera
    • 1
  • S. Ghosal
    • 1
  • S. Ray
    • 2
  • A. Basu
    • 3
  • M. Ray
    • 1
    Email author
  1. 1.Department of Biological ChemistryIndian Association for the Cultivation of ScienceJadavpurIndia
  2. 2.KolkataIndia
  3. 3.Department of SurgeryS.S.K.M. HospitalKolkataIndia

Personalised recommendations