Advertisement

Biochemistry (Moscow)

, 76:1003 | Cite as

Influence of placental mannose/N-acetyl glucosamine-binding proteins on the interaction of insulin and insulin-like growth factors with their receptors

  • O. NedićEmail author
  • D. Filimonović
  • Z. Miković
  • R. Masnikosa
Article
  • 85 Downloads

Abstract

Placenta is a source of carbohydrate-binding proteins that function as molecular scavengers, but they could also be involved in interactions that assist in metabolic control. Mannose/N-acetyl-glucosamine (Man/GlcNAc)-binding proteins from placenta were isolated and their reactivity towards placental insulin and insulin-like growth factor receptors (IR and IGF-Rs) was analyzed. The lectins reduced the binding of insulin and IGF-I in a dose-dependent manner, while almost no effect was observed on the binding of IGF-II. The shape of the inhibition curves changed, suggesting altered binding specificity. The presence of sugar could not reverse completely the effect of the lectins, implicating both lectin-sugar and protein-protein conformational recognition. Since biological molecules in our experimental system were those that are in close relation in vivo, placental Man/GlcNAc-specific lectins may be regarded as potential allosteric modulators of lig- and-receptor interactions in a system of homologous ligands, selectively affecting only binding to tyrosine kinase type receptors (IR and IGF-1R).

Key words

insulin insulin-like growth factors receptors lectins placenta 

Abbreviations

CIM6P/IGF-II-R

cation-independent mannose-6-phosphate/IGF-II receptor

Con A

concanavalin A

GlcNAc

N-acetyl-glucosamine

HbA1c

glycosylated (glycated) hemoglobin

HBS

Hepes buffered saline

IDDM

insulin-dependent diabetes mellitus

IGF

insulin-like growth factor

IR

insulin receptor

IGF-1R

type 1 IGF receptor

IGF-2R

type 2 IGF receptor

Man

mannose

MBL

mannose-binding lectin

MMR

macrophage mannose receptor

PBS

phosphate buffered saline

WGA

wheat germ agglutinin

References

  1. 1.
    Sharon, N. (2007) J. Biol. Chem., 282, 2753–2764.PubMedCrossRefGoogle Scholar
  2. 2.
    Sharon, N. (2008) Biochem. Soc. Trans., 36, 1457–1460.PubMedCrossRefGoogle Scholar
  3. 3.
    Sharon, N. (1993) Trends Biochem. Sci., 18, 221–226.PubMedCrossRefGoogle Scholar
  4. 4.
    Masnikosa, R., Baricević, I., Jones, D. R., and Nedić, O. (2006) Growth Horm. IGF Res., 16, 174–184.PubMedCrossRefGoogle Scholar
  5. 5.
    Masnikosa, R., Nikolić, J. A., and Nedić, O. (2008) J. Biochem., 143, 813–820.PubMedCrossRefGoogle Scholar
  6. 6.
    Masnikosa, R., Nikolić, J. A., and Nedić, O. (2008) J. Serb. Chem. Soc., 73, 793–804.CrossRefGoogle Scholar
  7. 7.
    Kilpatrick, D. C., Bevan, N. H., Liston, W. A., Hirabayashi, J., Kasai, K., and Cooper, B. L. (1996) in Lectins: Biology, Biochemistry, Clinical Biochemistry (Van Driessche, E., Rouge, P., Beeckmans, S., and Bog-Hansen, T. C., eds.) Vol. 11, Textop, Hellerup, Denmark, pp. 161–167.Google Scholar
  8. 8.
    Holmskov, U., Thiel, S., and Jensenius, J. C. (2003) Ann. Rev. Immunol., 21, 547–578.CrossRefGoogle Scholar
  9. 9.
    Napper, C. A., Dyson, M. H., and Taylor, M. E. (2001) J. Biol. Chem., 276, 14759–14766.PubMedCrossRefGoogle Scholar
  10. 10.
    Masnikosa, R., Nikolić, J. A., and Nedić, O. (2003) J. Serb. Chem. Soc., 68, 811–818.CrossRefGoogle Scholar
  11. 11.
    Bradford, M. M. (1976) Anal. Biochem., 72, 248–254.PubMedCrossRefGoogle Scholar
  12. 12.
    Fornstedt, N., and Porath, J. (1975) FEBS Lett., 57, 187–191.PubMedCrossRefGoogle Scholar
  13. 13.
    Laemmli, U. K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  14. 14.
    Nedić, O., and Masnikosa, R. (2009) Biochemistry (Moscow), 74, 29–35.CrossRefGoogle Scholar
  15. 15.
    Hunter, W. M., and Greenwood, F. C. (1962) Nature, 194, 495–499.PubMedCrossRefGoogle Scholar
  16. 16.
    Kilpatrick, D. C. (2002) Transfus. Med., 12, 335–351.PubMedCrossRefGoogle Scholar
  17. 17.
    Takahashi, K., Ip, W. K. E., Michelow, I. C., and Ezekowitz, R. A. B. (2006) Curr. Opin. Immunol., 18, 16–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Hansen, T. K., Forsblom, C., Saraheimo, M., Thorn, L., Waden, J., Hoyem, P., Ostergaard, J., Flyvbjerg, A., and Groop, P.-H. (2010) Diabetologia, 53, 1517–1524.PubMedCrossRefGoogle Scholar
  19. 19.
    Troelsen, L. N., Garred, P., and Jacobsen, S. (2010) J. Rheumatol., 37, 536–543.PubMedCrossRefGoogle Scholar
  20. 20.
    La Bonte, L. R., Dokken, B., Davis-Gorman, G., Stahl, G. L., and McDonagh, P. F. (2009) Diab. Vasc. Dis. Res., 6, 172–180.PubMedCrossRefGoogle Scholar
  21. 21.
    Teillet, F., Dublet, B., Andrieu, J.-P., Gaboriaud, C., Arlaud, G. J., and Thielens, N. M. (2005) J. Immunol., 174, 2870–2877.PubMedGoogle Scholar
  22. 22.
    Jensen, P. H., Weilguny, D., Matthiesen, F., McGuire, K. A., Shi, L., and Hojrup, P. (2005) J. Biol. Chem., 280, 11043–11051.PubMedCrossRefGoogle Scholar
  23. 23.
    Ip, E. W. K., Takahashi, K., Ezekowitz, R. A., and Stuart, L. M. (2009) Immunol. Rev., 230, 9–21.PubMedCrossRefGoogle Scholar
  24. 24.
    Keck, R., Nayak, N., Lerner, L., Raju, S., Ma, S., Schreitmueller, T., Chamow, S., Moorhouse, K., Kotts, C., and Jones, A. (2008) Biologicals, 36, 49–60.PubMedCrossRefGoogle Scholar
  25. 25.
    Feinberg, H., Park-Snyder, S., Kolatkar, A. R., Heise, C. T., Taylor, M. E., and Weis, W. I. (2000) J. Biol. Chem., 275, 21539–21548.PubMedCrossRefGoogle Scholar
  26. 26.
    Werner, H. (1999) in The IGF System: Molecular Biology, Physiology and Clinical Applications (Rosenfeld, R. G., and Roberts, C. T., Jr., eds.) Humana Press, Totowa, USA, pp. 63–88.Google Scholar
  27. 27.
    Debray, H., Decoult, D., Strecker, G., Spik, G., and Montreuil, J. (1981) Eur. J. Biochem., 117, 41–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Scott, J. K., Loganathan, D., Easley, R. B., Gong, X., and Goldstein, I. J. (1992) Proc. Natl. Acad. Sci. USA, 89, 5398–5402.PubMedCrossRefGoogle Scholar
  29. 29.
    Lagundzin, D., Masnikosa, R., Miljus, G., Robajać, D., and Nedić, O. (2010) J. Serb. Chem. Soc., 75, 1481–1489.CrossRefGoogle Scholar
  30. 30.
    Walsh, C. T., Garneau-Tsodikova, S., and Gatto, G. J., Jr. (2005) Angew. Chem. Int. Ed., 44, 7342–7372.CrossRefGoogle Scholar
  31. 31.
    Mendez, J. D., Xie, J., Aguilar-Hernandez, M., and Mendez-Valenzuela, V. (2010) Mol. Cell. Biochem., 344, 185–193.PubMedCrossRefGoogle Scholar
  32. 32.
    Sgambati, E., Marini, M., Vichi, D., Thyrion, G. D. Z., Parretti, E., Mello, G., and Gheri, G. (2007) Histochem. Cell. Biol., 128, 263–273.PubMedCrossRefGoogle Scholar
  33. 33.
    Arabkhari, M., Bunda, S., Wang, Y., Wang, A., Pshezhetsky, A. V., and Hinek, A. (2010) Glycobiology, 20, 603–616.PubMedCrossRefGoogle Scholar
  34. 34.
    Weber, M., Baricevic-Jones, I., Masnikosa, R., Filimonović, D., Miković, Z., and Nedić, O. (2009) J. Med. Biohem., 28, 30–35.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • O. Nedić
    • 1
    Email author
  • D. Filimonović
    • 2
  • Z. Miković
    • 2
  • R. Masnikosa
    • 1
  1. 1.Institute for the Application of Nuclear EnergyUniversity of BelgradeBelgradeSerbia
  2. 2.Clinic of Gynecology and Obstetrics Narodni FrontUniversity of BelgradeBelgradeSerbia

Personalised recommendations