Advertisement

Biochemistry (Moscow)

, 76:932 | Cite as

A-to-I and C-to-U editing within transfer RNAs

  • A. A. H. Su
  • L. RandauEmail author
Review

Abstract

A significant number of post-transcriptional changes occur during the generation of mature transfer RNAs (tRNAs). These changes within precursor-tRNA molecules include the processing of 5′ and 3′ termini, the introduction of modifications, and also RNA editing. In this review, we will detail the reported cases of A-to-I and C-to-U tRNA editing. The most widespread example is the A-to-I conversion of the tRNA anticodon wobble base mediated by TadA in prokaryotes and the heterodimeric ADAT2-ADAT3 complex in eukaryotes. Recently, the plant chloroplast adenosine-to-inosine tRNA editing enzyme has been discovered. The editing of C-to-U is much less prevalent within tRNA and is currently only known to occur in few organellar tRNA species and the cytoplasmic threonyl-tRNA in trypanosomatids. The responsible editing enzyme remains to be identified. Finally, an unusually widespread C-to-U editing scenario was discovered in the archaeon Methanopyrus kandleri. This editing is mediated by CDAT8, which is responsible for the restoration of the proper folding of thirty different tRNA species. The evolution of CDAT8 will be discussed.

Key words

tRNA processing CDAT8 tRNA editing TadA ADAT2-ADAT3 

Supplementary material

10541_2011_9462_MOESM1_ESM.pdf (244 kb)
Supplementary material, approximately 244 KB.

References

  1. 1.
    Felsenfeld, G., and Cantoni, G. L. (1964) Proc. Natl. Acad. Sci. USA, 51, 818–826.PubMedCrossRefGoogle Scholar
  2. 2.
    Kim, S. H., Quigley, G. J., Suddath, F. L., McPherson, A., Sneden, D., Kim, J. J., Weinzierl, J., and Rich, A. (1973) Science, 179, 285–288.PubMedCrossRefGoogle Scholar
  3. 3.
    Ibba, M., and Soll, D. (2004) Genes Dev., 18, 731–738.PubMedCrossRefGoogle Scholar
  4. 4.
    Ibba, M., and Soll, D. (1999) Science, 286, 1893–1897.PubMedCrossRefGoogle Scholar
  5. 5.
    Agris, P. F., Vendeix, F. A., and Graham, W. D. (2007) J. Mol. Biol., 366, 1–13.PubMedCrossRefGoogle Scholar
  6. 6.
    Li, H. (2007) Curr. Opin. Struct. Biol., 17, 293–301.PubMedCrossRefGoogle Scholar
  7. 7.
    Hartmann, R. K., Gossringer, M., Spath, B., Fischer, S., and Marchfelder, A. (2009) Prog. Mol. Biol. Transl. Sci., 85, 319–368.PubMedCrossRefGoogle Scholar
  8. 8.
    Soll, D. (1971) Science, 173, 293–299.PubMedCrossRefGoogle Scholar
  9. 9.
    Fujishima, K., Sugahara, J., Kikuta, K., Hirano, R., Sato, A., Tomita, M., and Kanai, A. (2009) Proc. Natl. Acad. Sci. USA, 106, 2683–2687.PubMedCrossRefGoogle Scholar
  10. 10.
    Randau, L., Calvin, K., Hall, M., Yuan, J., Podar, M., Li, H., and Soll, D. (2005) Proc. Natl. Acad. Sci. USA, 102, 17934–17939.PubMedCrossRefGoogle Scholar
  11. 11.
    Randau, L., Munch, R., Hohn, M. J., Jahn, D., and Soll, D. (2005) Nature, 433, 537–541.PubMedCrossRefGoogle Scholar
  12. 12.
    Maruyama, S., Sugahara, J., Kanai, A., and Nozaki, H. (2010) Mol. Biol. Evol., 27, 1070–1076.PubMedCrossRefGoogle Scholar
  13. 13.
    Soma, A., Onodera, A., Sugahara, J., Kanai, A., Yachie, N., Tomita, M., Kawamura, F., and Sekine, Y. (2007) Science, 318, 450–453.PubMedCrossRefGoogle Scholar
  14. 14.
    Lavrov, D. V., Brown, W. M., and Boore, J. L. (2000) Proc. Natl. Acad. Sci. USA, 97, 13738–13742.PubMedCrossRefGoogle Scholar
  15. 15.
    Price, D. H., and Gray, M. W. (1999) RNA, 5, 302–317.PubMedCrossRefGoogle Scholar
  16. 16.
    Byrne, E. M., and Gott, J. M. (2004) Mol. Cell. Biol., 24, 7821–7828.PubMedCrossRefGoogle Scholar
  17. 17.
    Juhling, F., Morl, M., Hartmann, R. K., Sprinzl, M., Stadler, P. F., and Putz, J. (2009) Nucleic Acids Res., 37, D159–162.PubMedCrossRefGoogle Scholar
  18. 18.
    Holley, R. W., Everett, G. A., Madison, J. T., and Zamir, A. (1965) J. Biol. Chem., 240, 2122–2128.PubMedGoogle Scholar
  19. 19.
    Grosjean, H., Auxilien, S., Constantinesco, F., Simon, C., Corda, Y., Becker, H. F., Foiret, D., Morin, A., Jin, Y. X., Fournier, M., and Fourrey, J. L. (1996) Biochimie, 78, 488–501.PubMedCrossRefGoogle Scholar
  20. 20.
    Gerber, A., Grosjean, H., Melcher, T., and Keller, W. (1998) EMBO J., 17, 4780–4789.PubMedCrossRefGoogle Scholar
  21. 21.
    Maas, S., Gerber, A. P., and Rich, A. (1999) Proc. Natl. Acad. Sci. USA, 96, 8895–8900.PubMedCrossRefGoogle Scholar
  22. 22.
    Hundley, H. A., and Bass, B. L. (2010) Trends Biochem. Sci., 35, 377–383.PubMedCrossRefGoogle Scholar
  23. 23.
    Macbeth, M. R., Schubert, H. L., Vandemark, A. P., Lingam, A. T., Hill, C. P., and Bass, B. L. (2005) Science, 309, 1534–1539.PubMedCrossRefGoogle Scholar
  24. 24.
    Gerber, A. P., and Keller, W. (1999) Science, 286, 1146–1149.PubMedCrossRefGoogle Scholar
  25. 25.
    Berman, H., Henrick, K., and Nakamura, H. (2003) Nat. Struct. Biol., 10, 980.PubMedCrossRefGoogle Scholar
  26. 26.
    Yamaizumi, Z., Ihara, M., Kuchino, Y., Gupta, R., Woese, C. R., and Nishimura, S. (1982) Nucleic Acids Symp. Ser., 209–213.Google Scholar
  27. 27.
    Wolf, J., Gerber, A. P., and Keller, W. (2002) EMBO J., 21, 3841–3851.PubMedCrossRefGoogle Scholar
  28. 28.
    Elias, Y., and Huang, R. H. (2005) Biochemistry, 44, 12057–12065.PubMedCrossRefGoogle Scholar
  29. 29.
    Kuratani, M., Ishii, R., Bessho, Y., Fukunaga, R., Sengoku, T., Shirouzu, M., Sekine, S., and Yokoyama, S. (2005) J. Biol. Chem., 280, 16002–16008.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee, W. H., Kim, Y. K., Nam, K. H., Priyadarshi, A., Lee, E. H., Kim, E. E., Jeon, Y. H., Cheong, C., and Hwang, K. Y. (2007) Proteins, 68, 1016–1019.PubMedCrossRefGoogle Scholar
  31. 31.
    Losey, H. C., Ruthenburg, A. J., and Verdine, G. L. (2006) Nat. Struct. Mol. Biol., 13, 153–159.PubMedCrossRefGoogle Scholar
  32. 32.
    Karcher, D., and Bock, R. (2009) RNA, 15, 1251–1257.PubMedCrossRefGoogle Scholar
  33. 33.
    Delannoy, E., Le Ret, M., Faivre-Nitschke, E., Estavillo, G. M., Bergdoll, M., Taylor, N. L., Pogson, B. J., Small, I., Imbault, P., and Gualberto, J. M. (2009) Plant Cell, 21, 2058–2071.PubMedCrossRefGoogle Scholar
  34. 34.
    Binder, S., Marchfelder, A., and Brennicke, A. (1994) Mol. Gen. Genet., 244, 67–74.PubMedCrossRefGoogle Scholar
  35. 35.
    Fey, J., Weil, J. H., Tomita, K., Cosset, A., Dietrich, A., Small, I., and Marechal-Drouard, L. (2001) Acta Biochim. Pol., 48, 383–389.PubMedGoogle Scholar
  36. 36.
    Fey, J., Weil, J. H., Tomita, K., Cosset, A., Dietrich, A., Small, I., and Marechal-Drouard, L. (2002) Gene, 286, 21–24.PubMedCrossRefGoogle Scholar
  37. 37.
    Janke, A., and Paabo, S. (1993) Nucleic Acids Res., 21, 1523–1525.PubMedCrossRefGoogle Scholar
  38. 38.
    Morl, M., Dorner, M., and Paabo, S. (1995) Nucleic Acids Res., 23, 3380–3384.PubMedCrossRefGoogle Scholar
  39. 39.
    Alfonzo, J. D., Blanc, V., Estevez, A. M., Rubio, M. A., and Simpson, L. (1999) EMBO J., 18, 7056–7062.PubMedCrossRefGoogle Scholar
  40. 40.
    Rubio, M. A., Ragone, F. L., Gaston, K. W., Ibba, M., and Alfonzo, J. D. (2006) J. Biol. Chem., 281, 115–120.PubMedCrossRefGoogle Scholar
  41. 41.
    Gaston, K. W., Rubio, M. A., Spears, J. L., Pastar, I., Papavasiliou, F. N., and Alfonzo, J. D. (2007) Nucleic Acids Res., 35, 6740–6749.PubMedCrossRefGoogle Scholar
  42. 42.
    Rubio, M. A., Pastar, I., Gaston, K. W., Ragone, F. L., Janzen, C. J., Cross, G. A., Papavasiliou, F. N., and Alfonzo, J. D. (2007) Proc. Natl. Acad. Sci. USA, 104, 7821–7826.PubMedCrossRefGoogle Scholar
  43. 43.
    Randau, L., Stanley, B. J., Kohlway, A., Mechta, S., Xiong, Y., and Soll, D. (2009) Science, 324, 657–659.PubMedCrossRefGoogle Scholar
  44. 44.
    Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T., and Horikoshi, K. (2008) Proc. Natl. Acad. Sci. USA, 105, 10949–10954.PubMedCrossRefGoogle Scholar
  45. 45.
    Slesarev, A. I., Mezhevaya, K. V., Makarova, K. S., Polushin, N. N., Shcherbinina, O. V., Shakhova, V. V., Belova, G. I., Aravind, L., Natale, D. A., Rogozin, I. B., Tatusov, R. L., Wolf, Y. I., Stetter, K. O., Malykh, A. G., Koonin, E. V., and Kozyavkin, S. A. (2002) Proc. Natl. Acad. Sci. USA, 99, 4644–4649.PubMedCrossRefGoogle Scholar
  46. 46.
    Sterner, T., Jansen, M., and Hou, Y. M. (1995) RNA, 1, 841–851.PubMedGoogle Scholar
  47. 47.
    Jones, C. N., Jones, C. I., Graham, W. D., Agris, P. F., and Spremulli, L. L. (2008) J. Biol. Chem., 283, 34445–34456.PubMedCrossRefGoogle Scholar
  48. 48.
    Mattoccia, E., Baldi, I. M., Gandini-Attardi, D., Ciafre, S., and Tocchini-Valentini, G. P. (1988) Cell, 55, 731–738.PubMedCrossRefGoogle Scholar
  49. 49.
    Palmer, J. R., Baltrus, T., Reeve, J. N., and Daniels, C. J. (1992) Biochim. Biophys. Acta, 1132, 315–318.PubMedGoogle Scholar
  50. 50.
    Burggraf, S., Stetter, K. O., Rouviere, P., and Woese, C. R. (1991) Syst. Appl. Microbiol., 14, 346–351.PubMedGoogle Scholar
  51. 51.
    Rivera, M. C., and Lake, J. A. (1996) Int. J. Syst. Bacteriol., 46, 348–351.PubMedCrossRefGoogle Scholar
  52. 52.
    Brochier, C., Forterre, P., and Gribaldo, S. (2004) Genome Biol., 5, R17.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Max-Planck-Institute for Terrestrial MicrobiologyMarburgGermany

Personalised recommendations