Advertisement

Biochemistry (Moscow)

, Volume 76, Issue 5, pp 555–563 | Cite as

Apomyoglobin mutants with single point mutations at Val10 can form amyloid structures at permissive temperature

  • N. S. Katina
  • N. B. Ilyina
  • I. A. Kashparov
  • V. A. Balobanov
  • V. D. Vasiliev
  • V. E. BychkovaEmail author
Article

Abstract

Formation of amyloid-like protein aggregates in human organs and tissues underlies many serious diseases, therefore being in the focus of numerous biochemical, medical, and molecular biological studies. So far, formation of amyloids by globular proteins has been studied mostly under conditions that strongly destabilized their native structure. Here we present our results obtained at permissive temperature by thioflavin T fluorescence, far UV CD, IR spectroscopy, and electron microscopy. We used apomyoglobin and its mutants with Ala or Phe substituted for Val10 that are structurally close to wild type apomyoglobin. It is shown that at permissive temperature the ability of the protein to form amyloids depends on the extent of its structural destabilization, but not on hydrophobicity of the substituting residue. A possible difference between amyloids formed by strongly destabilized proteins and those yielded by proteins with a slightly fluctuating native structure, as well as the stroke and infarction effect on the ability of proteins to form amyloid structures, are discussed.

Key words

apomyoglobin apomyoglobin mutants amyloid structure protein stability cross-β-structure aggregation kinetics 

Abbreviations

apoMb

apomyoglobin

EM

electron microscopy

ThT

thioflavin T

WT

wild type

[θ]

molar ellipticity at a given wavelength λ

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chiti, F., and Dobson, C. M. (2006) Annu. Rev. Biochem., 75, 333–366.PubMedCrossRefGoogle Scholar
  2. 2.
    Maji, S. K., Perrin, M. H., Sawaya, M. R., Jessberger, S., Vadodaria, K., Rissman, R. A., Singru, P. S., Nilsson, K. P., Simon, R., Schubert, D., Eisenberg, D., Rivier, J., Sawchenko, P., Vale, W., and Riek, R. (2009) Science, 325, 328–332.PubMedCrossRefGoogle Scholar
  3. 3.
    Fandrich, M., and Dobson, C. M. (2002) EMBO J., 21, 5682–5690.PubMedCrossRefGoogle Scholar
  4. 4.
    Chiti, F., Webster, P., Taddei, N., Clark, A., Stefani, M., Ramponi, G., and Dobson, C. M. (1999) Proc. Natl. Acad. Sci. USA, 96, 3590–3594.PubMedCrossRefGoogle Scholar
  5. 5.
    Guijarro, J. I., Sunde, M., Jones, J. A., Campbell, I. D., and Dobson, C. M. (1998) Proc. Natl. Acad. Sci. USA, 95, 4224–4228.PubMedCrossRefGoogle Scholar
  6. 6.
    Fandrich, M., Forge, V., Buder, K., Kittler, M., Dobson, C. M., and Diekmann, S. (2003) Proc. Natl. Acad. Sci. USA, 100, 15463–15468.PubMedCrossRefGoogle Scholar
  7. 7.
    Booth, D. R., Sunde, M., Bellotti, V., Robinson, C. V., Hutchinson, W. L., Fraser, P. E., Hawkins, P. N., Dobson, C. M., Radford, S. E., Blake, C. C., and Pepys, M. B. (1997) Nature, 385, 787–793.PubMedCrossRefGoogle Scholar
  8. 8.
    Ramirez-Alvarado, M., Merkel, J. S., and Regan, L. (2000) Proc. Natl. Acad. Sci. USA, 97, 8979–8984.PubMedCrossRefGoogle Scholar
  9. 9.
    Stathopulos, P. B., Rumfeldt, J. A., Scholz, G. A., Irani, R. A., Frey, H. E., Hallewell, R. A., Lepock, J. R., and Meiering, E. M. (2003) Proc. Natl. Acad. Sci. USA, 100, 7021–7026.PubMedCrossRefGoogle Scholar
  10. 10.
    Hurle, M. R., Helms, L. R., Li, L., Chan, W., and Wetzel, R. (1994) Proc. Natl. Acad. Sci. USA, 91, 5446–5450.PubMedCrossRefGoogle Scholar
  11. 11.
    Chiti, F., and Dobson, C. M. (2009) Nat. Chem. Biol., 5, 15–22.PubMedCrossRefGoogle Scholar
  12. 12.
    Platt, G. W., Routledge, K. E., Homans, S. W., and Radford, S. E. (2008) J. Mol. Biol., 378, 251–263.PubMedCrossRefGoogle Scholar
  13. 13.
    Chiti, F., Taddei, N., Baroni, F., Capanni, C., Stefani, M., Ramponi, G., and Dobson, C. M. (2002) Nat. Struct. Biol., 9, 137–143.PubMedCrossRefGoogle Scholar
  14. 14.
    Kim, W., and Hecht, M. H. (2008) J. Mol. Biol., 377, 565–574.PubMedCrossRefGoogle Scholar
  15. 15.
    Nishimura, C., Dyson, H. J., and Wright, P. E. (2006) J. Mol. Biol., 355, 139–156.PubMedCrossRefGoogle Scholar
  16. 16.
    Griko, Y. V., Privalov, P. L., Venyaminov, S. Y., and Kutyshenko, V. P. (1988) J. Mol. Biol., 202, 127–138.PubMedCrossRefGoogle Scholar
  17. 17.
    Hughson, F. M., Barrick, D., and Baldwin, R. L. (1991) Biochemistry, 30, 4113–4118.PubMedCrossRefGoogle Scholar
  18. 18.
    Baryshnikova, E. N., Sharapov, M. G., Kashparov, I. A., Ilyina, N. B., and Bychkova, V. E. (2005) Mol. Biol. (Moscow), 39, 292–297.CrossRefGoogle Scholar
  19. 19.
    Baryshnikova (Samatova), E. N., Melnik, B. S., Balobanov, V. A., Katina, N. S., Finkelstein, A. V., Semisotnov, G. V., and Bychkova, V. E. (2009) Mol. Biol. (Moscow), 43, 136–147.Google Scholar
  20. 20.
    Samatova, E. N., Katina, N. S., Balobanov, V. A., Melnik, B. S., Dolgikh, D. A., Bychkova, V. E., and Finkelstein, A. V. (2009) Protein Sci., 18, 2152–2159.PubMedCrossRefGoogle Scholar
  21. 21.
    Samatova, E. N., Melnik, B. S., Balobanov, V. A., Katina, N. S., Dolgikh, D. A., Semisotnov, G. V., Finkelstein, A. V., and Bychkova, V. E. (2010) Biophys. J., 98, 1694–1702.PubMedCrossRefGoogle Scholar
  22. 22.
    Fandrich, M., Fletcher, M. A., and Dobson, C. M. (2001) Nature, 410, 165–166.PubMedCrossRefGoogle Scholar
  23. 23.
    Vilasi, S., Dosi, R., Iannuzzi, C., Malmo, C., Parente, A., Irace, G., and Sirangelo, I. (2006) FEBS Lett., 580, 1681–1684.PubMedCrossRefGoogle Scholar
  24. 24.
    Picotti, P., de Franceschi, G., Frare, E., Spolaore, B., Zambonin, M., Chiti, F., de Laureto, P. P., and Fontana, A. (2007) J. Mol. Biol., 367, 1237–1245.PubMedCrossRefGoogle Scholar
  25. 25.
    Sirangelo, I., Malmo, C., Casillo, M., Mezzogiorno, A., Papa, M., and Irace, G. (2002) J. Biol. Chem., 277, 45887–45891.PubMedCrossRefGoogle Scholar
  26. 26.
    Sirangelo, I., Malmo, C., Iannuzzi, C., Mezzogiorno, A., Bianco, M. R., Papa, M., and Irace, G. (2004) J. Biol. Chem., 279, 13183–13189.PubMedCrossRefGoogle Scholar
  27. 27.
    Iannuzzi, C., Vilasi, S., Portaccio, M., Irace, G., and Sirangelo, I. (2007) Protein Sci., 16, 507–516.PubMedCrossRefGoogle Scholar
  28. 28.
    Galzitskaya, O. V., Garbuzynskiy, S. O., and Lobanov, M. Y. (2006) PLoS. Comput. Biol., 2, e177.PubMedCrossRefGoogle Scholar
  29. 29.
    Dyuysekina, A. E., Dolgikh, D. A., Samatova (Baryshnikova), E. N., Tiktopulo, E. I., Balobanov, V. A., and Bychkova, V. E. (2008) Biochemistry (Moscow), 73, 693–701.CrossRefGoogle Scholar
  30. 30.
    Jennings, P. A., Stone, M. J., and Wright, P. E. (1995) J. Biomol. NMR, 6, 271–276.PubMedCrossRefGoogle Scholar
  31. 31.
    Jaenicke, L. (1974) Anal. Biochem., 61, 623–627.PubMedCrossRefGoogle Scholar
  32. 32.
    Valentine, R. C., Shapiro, B. M., and Stadtman, E. R. (1968) Biochemistry, 7, 2143–2152.PubMedCrossRefGoogle Scholar
  33. 33.
    Vasiliev, V. D., and Koteliansky, V. E. (1979) Meth. Enzymol., 59, 612–629.PubMedCrossRefGoogle Scholar
  34. 34.
    Kong, J., and Yu, S. (2007) Acta Biochim. Biophys. Sin. (Shanghai), 39, 549–559.CrossRefGoogle Scholar
  35. 35.
    Senin, A. A., Potekhin, S. A., Tiktopulo, E. I., and Filimonov, V. V. (2000) J. Therm. Anal. Calorim., 62, 153–160.CrossRefGoogle Scholar
  36. 36.
    Plakoutsi, G., Bemporad, F., Monti, M., Pagnozzi, D., Pucci, P., and Chiti, F. (2006) Structure, 14, 993–1001.PubMedCrossRefGoogle Scholar
  37. 37.
    Munekata, K., and Hossmann, K.-A. (1987) Stroke, 18, 412–417.PubMedGoogle Scholar
  38. 38.
    Simon, R., and Xiong, Z. (2006) Biochem. Soc. Trans., 34, 1356–1361.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. S. Katina
    • 1
  • N. B. Ilyina
    • 1
  • I. A. Kashparov
    • 1
  • V. A. Balobanov
    • 1
  • V. D. Vasiliev
    • 1
  • V. E. Bychkova
    • 1
    Email author
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations