Biochemistry (Moscow)

, 76:480 | Cite as

Oligopeptidase B from Serratia proteamaculans. II. Enzymatic characteristics: Substrate analysis, influence of calcium ions, pH and temperature dependences

  • A. G. MikhailovaEmail author
  • R. F. Khairullin
  • I. V. Demidyuk
  • T. Yu. Gromova
  • S. V. Kostrov
  • L. D. Rumsh


Enzymatic properties of a novel oligopeptidase B from psychrotolerant gram-negative microorganism Serratia proteamaculans (PSP) were studied. The substrate specificity of PSP was analyzed using p-nitroanilide substrates, and the influence of calcium ions on the enzyme activity was studied. Hydrolysis of oligopeptides by PSP was studied using melittin as the substrate. Optimal conditions for the PSP activity (pH and temperature) have been established. It was found that PSP shares some properties with oligopeptidases B from other sources containing two Asp/Glu residues in the S2 site, but it differs significantly in some characteristics. The S2 site of PSP contains only one Asp460 residue. The secondary specificity of PSP has a number of specific features: an unusual substrate inhibition by peptides with hydrophobic residues at the P2 position, as well as the drastic influence of calcium ions on substrate characteristics of the enzyme. It is assumed that the PSP molecule contains a large hydrophobic substrate-binding site, and significant conformational rearrangements of the enzyme active site are induced by Ca2+ binding and by the formation of the enzyme-substrate complex. The temperature characteristics of PSP (high activity at low temperature as well as low apparent temperature optimum (25°C)) confirm that PSP is a psychrophilic enzyme.

Key words

oligopeptidase B Serratia proteamaculans psychrophilic enzymes substrate analysis melittin pH dependence 




buffer A

0.1 M Tris-HCl, pH 8.0

buffer B

0.1 M Tris-HCl, pH 8.0, 50 mM CaCl2




dimethyl sulfoxide


oligopeptidase B




oligopeptidase B from Serratia proteamaculans






Nα-benzyloxycarbonyl-L-lysine thiobenzyl ester


  1. 1.
    Burleigh, B. A., Caler, E. V., Webster, P., and Andrews, N. W. (1997) J. Cell Biol., 136, 609–620.PubMedCrossRefGoogle Scholar
  2. 2.
    Troeberg, L., Pike, R. N., Morty, R. E., Berry, R. K., Coetzer, T. H., and Lonsdale-Eccles, J. D. (1996) Eur. J. Biochem., 238, 728–736.PubMedCrossRefGoogle Scholar
  3. 3.
    Morty, R. E., Lonsdale-Eccles, J. D., Morehead, J., Caler, E. V., Mentele, R., Auerswald, E. A., Coetzer, T. H., Andrews, N. W., and Burleigh, B. A. (1999) J. Biol. Chem., 274, 26149–26156.PubMedCrossRefGoogle Scholar
  4. 4.
    Morty, R. E., Pelle, R., Vadasz, I., Uzcanga, G. L., Seeger, W., and Bubis, J. (2005) J. Biol. Chem., 280, 10925–10937.PubMedCrossRefGoogle Scholar
  5. 5.
    Guedes, H. L. M., Carneiro, M. P. D., Gomes, D. C. O., Rossi-Bergmann, B., and De-Simone, S. G. (2007) Parasitol. Res., 101, 853–863.CrossRefGoogle Scholar
  6. 6.
    Pacaud, M., and Richaud, C. (1975) J. Biol. Chem., 250, 7771–7779.PubMedGoogle Scholar
  7. 7.
    Polgar, L. (1997) Proteins, 28, 375–379.PubMedCrossRefGoogle Scholar
  8. 8.
    Kanatani, A., Masuda, T., Shimoda, F., Misoka, X. S., Lin, T., Yoshimoto, D., and Tsuru, D. (1991) J. Biochem., 110, 315–320.PubMedGoogle Scholar
  9. 9.
    Yan, J.-B., Wang, G.-Q., Du, P., Zhu, D.-X., Wang, M.-W., and Jiang, X.-Y. (2006) Prot. Expr. Purif., 47, 645–650.CrossRefGoogle Scholar
  10. 10.
    Yoshimoto, T., Tabira, J., Kabashima, T., Inoue, S., and Ito, K. (1995) J. Biochem., 117, 654–660.PubMedGoogle Scholar
  11. 11.
    Morty, R. E., Fulop, V., and Andrews, N. W. (2002) J. Bacteriol., 184, 3329–3337.PubMedCrossRefGoogle Scholar
  12. 12.
    Fenno, J. C., Lee, S. Y., Bayer, C. H., and Ning, Y. (2001) Infect. Immun., 69, 6193–6200.PubMedCrossRefGoogle Scholar
  13. 13.
    Polgar, L. (2002) Cell Mol. Life Sci., 59, 349–362.PubMedCrossRefGoogle Scholar
  14. 14.
    Hemerly, J. P., Oliveira, V., Del Nery, E., Morty, R. E., Andrews, N. W., Juliano, M. A., and Juliano, L. (2003) Biochem. J., 373, 933–939.PubMedCrossRefGoogle Scholar
  15. 15.
    Polgar, L., and Felfoldi, F. (1998) Proteins, 30, 424–434.PubMedCrossRefGoogle Scholar
  16. 16.
    Mikhailova, A. G., Likhareva, V. V., Khairullin, R. F., Lubenets, N. L., Rumsh, L. D., Demidyuk, I. V., and Kostrov, S. V. (2006) Biochemistry (Moscow), 71, 563–570.CrossRefGoogle Scholar
  17. 17.
    Khairullin, R. F., Mikhailova, A. G., Sebyakina, T. Yu., Lubenets, N. L., Ziganshin, R. Kh., Demidyuk, I. V., Gromova, T. Yu., Kostrov, S. V., and Rumsh, L. D. (2009) Biochemistry (Moscow), 74, 1164–1172.CrossRefGoogle Scholar
  18. 18.
    Walsh, K. F., and Wilcox, P. E. (1970) Meth. Enzymol., 19, 31–41.CrossRefGoogle Scholar
  19. 19.
    Polgar, L. (1999) Biochemistry, 38, 15548–15555.PubMedCrossRefGoogle Scholar
  20. 20.
    Juhasz, T., Szeltner, Z., Renner, V., and Polgar, L. (2002) Biochemistry, 41, 4096–4106.PubMedCrossRefGoogle Scholar
  21. 21.
    Da Silva-Lopez, R. E., Morgado-Diaz, J. A., Dos Santos, P. T., and Giovanni-De-Simone, S. (2008) Acta Trop., 107, 159–167.PubMedCrossRefGoogle Scholar
  22. 22.
    Brestkin, A. P., Novikova, N. V., Prokof’eva, E., and Rzhekhina, N. I. (1961) Biokhimiya, 26, 266–275.Google Scholar
  23. 23.
    Berezin, I. V., and Klesov, A. A. (1976) Practical Course in Chemical and Enzyme Kinetics [in Russian], MGU, Moscow, pp. 130–131.Google Scholar
  24. 24.
    Bagarozzi, D. A., Jr., Potempa, J., and Travis, J. (1998) Am. J. Respir. Cell Mol. Biol., 18, 363–369.PubMedGoogle Scholar
  25. 25.
    De Andrade, A. S., Santoro, M. M., De Melo, M. N., and Mares-Guia, M. (1998) Exp. Parasitol., 89, 153–160.PubMedCrossRefGoogle Scholar
  26. 26.
    Nishikata, M. (1984) J. Biochem., 95, 1169–1177.PubMedGoogle Scholar
  27. 27.
    Tsuji, A., Yuasa, K., and Matsuda, Y. (2004) J. Biochem., 136, 673–681.PubMedCrossRefGoogle Scholar
  28. 28.
    Hancock, R. E., Brown, K. L., and Mookherjee, N. (2006) Immunobiology, 211, 315–322.PubMedCrossRefGoogle Scholar
  29. 29.
    Hancock, R. E., and Chapple, D. S. (1999) Antimicrob. Agents Chemother., 43, 1317–1323.PubMedGoogle Scholar
  30. 30.
    Park, C. B., Yi, K. S., Matsuzaki, K., Kim, M. S., and Kim, S. C. (2000) Proc. Natl. Acad. Sci. USA, 97, 8245–8250.PubMedCrossRefGoogle Scholar
  31. 31.
    Zasloff, M. (2002) Nature, 415, 389–395.PubMedCrossRefGoogle Scholar
  32. 32.
    Toke, O. (2005) Biopolymers, 80, 717–735.PubMedCrossRefGoogle Scholar
  33. 33.
    Fehlbaum, P., Bulet, P., Chernysh, S., Briand, J. P., Roussel, J. P., Letellier, L., Hetru, C., and Hoffmann, J. A. (1996) Proc. Natl. Acad. Sci. USA, 93, 1221–1225.PubMedCrossRefGoogle Scholar
  34. 34.
    Matsuzaki, K. (1998) Biochim. Biophys. Acta, 1376, 391–400.PubMedGoogle Scholar
  35. 35.
    Raghuraman, H., and Chattopadhyay, A. (2007) Biosci. Rep., 27, 189–223.PubMedCrossRefGoogle Scholar
  36. 36.
    D’Amico, S., Claverie, P., Collins, T., Georlette, D., Gratia, E., Hoyoux, A., Meuwis, M. A., Feller, G., and Gerday, C. (2002) Philos. Trans. R. Soc. Lond. B. Biol. Sci., 357, 917–925.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. G. Mikhailova
    • 1
    Email author
  • R. F. Khairullin
    • 1
  • I. V. Demidyuk
    • 2
  • T. Yu. Gromova
    • 2
  • S. V. Kostrov
    • 2
  • L. D. Rumsh
    • 1
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Molecular GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations