Advertisement

Biochemistry (Moscow)

, 76:450 | Cite as

Properties of Rhodobacter sphaeroides photosynthetic reaction center with double amino acid substitution I(L177)H+H(M182)L

  • T. Yu. Fufina
  • L. G. VasilievaEmail author
  • R. A. Khatypov
  • V. A. Shuvalov
Article

Abstract

Histidine M182 in the reaction center (RC) of Rhodobacter sphaeroides serves as the fifth ligand of the bacterio-chlorophyll (BChl) BB Mg atom. When this His is substituted by an amino acid that is not able to coordinate Mg, bacterio-pheophytin appears in the BB binding site instead of BChl (Katilius, E., et al. (1999) J. Phys. Chem. B, 103, 7386–7389). We have shown that in the presence of the additional mutation I(L177)H the coordination of the BChl BB Mg atom in the double mutant I(L177)H+H(M182)L RC still remains. Changes in the double mutant RC absorption spectrum attributed to BChl absorption suggest that BChl BB Mg atom axial ligation might be realized not from the usual α-side of the BChl macrocycle, but from the opposite, β-side. Weaker coordination of BChl BB Mg atom compared to the other mutant RC BChl molecules suggests that not an amino acid residue but a water molecule might be a possible ligand. The results are discussed in the light of the structural changes that occurred in the RC upon Ile/His substitution in the L177 position.

Key words

bacterial photosynthesis Rhodobacter sphaeroides photosynthetic reaction center site-directed mutagenesis bacteriochlorophyll Mg coordination 

Abbreviations

BA and BB

monomer bacteriochlorophylls

BChl

bacteriochlorophyll

BPhe

bacteriopheophytin

LDAO

lauryldimethylamine N-oxide

P

special pair of bacteriochlorophylls

PA and PB

bacteriochlorophylls of the special pair

RC

reaction center

References

  1. 1.
    Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H. (1984) J. Mol. Biol., 180, 385–398.PubMedCrossRefGoogle Scholar
  2. 2.
    Jones, M. R. (2009) in Advances in Photosynthesis and Respiration, Vol. 28 (Hunter, C. N., Daldal, F., Thurnauer, M. C., and Beatty, J. T., eds.) Springer, Dordrecht, pp. 295–321.Google Scholar
  3. 3.
    Yakovlev, A. G., Jones, M. R., Potter, J. A., Fyfe, P. K., Vasilieva, L. G., Shkuropatov, A. Ya., and Shuvalov, V. A. (2005) Chem. Phys., 319, 297–307.CrossRefGoogle Scholar
  4. 4.
    Borisov, A. Yu., and Kuznetsova, S. A. (2002) Biochemistry (Moscow), 67, 1224–1229.CrossRefGoogle Scholar
  5. 5.
    Mokronosov, A. T., and Gavrilenko, V. F. (1992) Photosynthesis. Physiological-Ecological and Biochemical Aspects [in Russian], Moscow State University Publishers, Moscow.Google Scholar
  6. 6.
    Balaban, T. S., Fromme, P., Holzwarth, A. R., Kraubeta, N., and Prokhorenko, V. I. (2002) Biochim. Biophys. Acta, 1556, 197–207.PubMedCrossRefGoogle Scholar
  7. 7.
    Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., and Saenger, W. (2009) Nature Struct. Mol. Biol., 16, 334–342.CrossRefGoogle Scholar
  8. 8.
    Garcia-Martin, A., Kwa, L. G., Strohmann, B., Robert, B., Holzwarth, A. R., and Braun, P. (2006) J. Biol. Chem., 281, 10626–10634.PubMedCrossRefGoogle Scholar
  9. 9.
    Khatypov, R. A., Vasilieva, L. G., Fufina, T. U., Bolgarina, T. I., and Shuvalov, V. A. (2005) Biochemistry (Moscow), 70, 1256–1261.CrossRefGoogle Scholar
  10. 10.
    Fufina, T. Y., Vasilieva, L. G., Khatypov, R. A., Shkuropatov, A. Y., and Shuvalov, V. A. (2007) FEBS Lett., 581, 5769–5773.PubMedCrossRefGoogle Scholar
  11. 11.
    Fufina, T. Y., Vasilieva, L. G., and Shuvalov, V. A. (2010) Biochemistry (Moscow), 75, 208–213.CrossRefGoogle Scholar
  12. 12.
    Katilius, E., Turanchik, T., Lin, S., Taguchi, A. K. W., and Woodbury, N. W. (1999) J. Phys. Chem. B, 103, 7386–7389.CrossRefGoogle Scholar
  13. 13.
    Kashino, Y., Koike, H., Yoshio, M., Egashira, H., Ikeuchi, M., Pakrasi, H. B., and Satoh, K. (2002) Plant Cell Physiol., 43, 1366–1373.PubMedCrossRefGoogle Scholar
  14. 14.
    Van der Rest, M., and Gingras, G. (1974) J. Biol. Chem., 249, 6446–6453.PubMedGoogle Scholar
  15. 15.
    Zabelin, A. A., Fufina, T. Y., Vasilieva, L. G., Shkuropatova, V. A., Zvereva, M. G., Shkurotapov, A. Y., and Shuvalov, V. A. (2009) Biochemistry (Moscow), 74, 68–74.CrossRefGoogle Scholar
  16. 16.
    Camara-Artigas, A., Brune, D., and Allen, J. P. (2002) Proc. Natl. Acad. Sci. USA, 99, 11055–11060.PubMedCrossRefGoogle Scholar
  17. 17.
    Morris, Z. S., Hanson, D. K., Pokkuluri, P. R., Mets, D. G., Hata, A. N., Poluektov, O. G., Thurnauer, M. C., Schiffer, M., and Laible, P. D. (2003) Chem. Phys., 294, 329–346.CrossRefGoogle Scholar
  18. 18.
    Frolov, D., Marsh, M., Crouch, L. I., Fyfe, P. K., Robert, B., van Grondelle, R., Hadfield, A., and Jones, M. R. (2010) Biochemistry, 49, 1882–1892.PubMedCrossRefGoogle Scholar
  19. 19.
    Oba, T., and Tamiaki, H. (2002) Photosynth. Res., 74, 1–10.PubMedCrossRefGoogle Scholar
  20. 20.
    Finkelstein, A. V., and Ptitsyn, O. B. (2005) Physics of Protein [in Russian], Knizhnyi Dom Universitet, Moscow.Google Scholar
  21. 21.
    Evans, T. A., and Katz, J. J. (1975) Biochim. Biophys. Acta, 396, 414–426.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • T. Yu. Fufina
    • 1
  • L. G. Vasilieva
    • 1
    Email author
  • R. A. Khatypov
    • 1
  • V. A. Shuvalov
    • 1
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations