Advertisement

Biochemistry (Moscow)

, Volume 76, Issue 4, pp 427–437 | Cite as

Regulation of cyclic electron transport through photosystem I in cyanobacterium Synechocystis sp. PCC 6803 mutants deficient in respiratory dehydrogenases

  • Yu. V. BolychevtsevaEmail author
  • I. V. Elanskaya
  • N. V. Karapetyan
Article

Abstract

The rate of PSI mediated cyclic electron transport was studied in wild type and mutant cells of Synechocystis sp. PCC 6803 deficient in NDH-1 (M55) or succinate dehydrogenase (SDH) that are responsible for the dark reduction of the plastoquinone pool. Kinetics of P700 photooxidation and P700+ dark reduction in the presence of 5·10−5 M 3-(3,4-dichlorophenyl)-1,1-dimethylurea have been registered as light induced absorbance changes at 810 nm resulting from illumination of cells with 730-nm actinic light for 1 sec. It is shown that in the absence of dehydrogenases the rate of dark reduction of P700+ in both mutants did not decrease but even increased in NDH-1-less mutant cells as compared with the rate in wild type cells. Dibromothymoquinone drastically reduced the rate of P700+ dark reduction both in wild type and in mutant cells. Thus, the cyclic electron transfer from ferredoxin through the plastoquinone pool to P700+, which is independent from dehydrogenases, takes place in all the types of cells. Preillumination of cells of wild type and both mutants for 30 min or anaerobic conditions resulted in delay of P700 photooxidation and acceleration of P700+ dark reduction, while the level of photosynthesis and respiration terminal acceptors (NAD(P)+ and oxygen) decreased. It appears that the rate of P700 photooxidation and P700+ dark reduction in cyclic electron transport in Synechocystis wild type and mutant cells is determined by the level of NADP+ and oxygen in stroma. A possible approach to evaluation of the levels of these acceptors in vivo is proposed, based on kinetic curve parameters of P700 photoconversions induced by 730-nm light with 1-sec duration.

Key words

cyclic electron transport NADPH P700 redox transients NDH-1 SDH 

Abbreviations

Cyd, CtaI, and CtaII

terminal oxidases

DBMIB

dibromothymoquinone

DCMU

3-(3,4-dichlorophenyl)-1,1-dimethylurea

Fd

ferredoxin

FNR

ferredoxin:NADP-oxidoreductase

FQR

ferredoxin:plastoquinoneoxidoreductase

Fv

variable part of fluorescence

NDH-1 and NDH-2

dehydrogenases

P700 (P700+)

primary electron donor of PSI in reduced (oxidized) state

PQ

plastoquinone

PSI (PSII)

photosystem 1 (2)

SDH

succinate dehydrogenase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Howitt, C. A., Smith, G. D., and Day, D. A. (1993) Biochim. Biophys. Acta, 1141, 313–320.CrossRefGoogle Scholar
  2. 2.
    Sturzl, E., Scherer, S., and Boeger, P. (1984) Physiol. Plant., 60, 479–483.CrossRefGoogle Scholar
  3. 3.
    Schmetterer, G. (1994) in The Molecular Biology of Cyanobacteria (Bryant, D. A., ed.) Kluwer Academic Publishers, Dordrecht, pp. 409–435.Google Scholar
  4. 4.
    Cooley, J. W., Howitt, C. A., and Vermaas, W. F. J. (2000) J. Bacteriol., 182, 714–722.PubMedCrossRefGoogle Scholar
  5. 5.
    Schultze, M., Forberich, B., Rexroth, S., Gwendolyn Dyczmons, N., Roegner, M., and Appel, J. (2009) Biochim. Biophys. Acta, 1787, 1479–1485.PubMedCrossRefGoogle Scholar
  6. 6.
    Maxwell, P. C., and Biggins, J. (1976) Biochemistry, 15, 3975–3981.PubMedCrossRefGoogle Scholar
  7. 7.
    Joliot, P., and Joliot, A. (2006) in Photosynthesis and Respiration, Vol. 24 (Golbeck, J. H., ed.) Springer, Dordrecht, pp. 639–656.Google Scholar
  8. 8.
    Jeanjean, R., van Thor, J. J., Havaux, M., Joset, F., and Matthijs, H. C. P. (1999) in The Phototrophic Prokaryotes (Peschek, G. A., Loffelhardt, W., and Schmetterer, G., eds.) Kluwer/Plenum, New York, pp. 251–258.Google Scholar
  9. 9.
    Shikanai, T. (2007) Annu. Rev. Plant Biol., 58, 199–217.PubMedCrossRefGoogle Scholar
  10. 10.
    Yeremenko, N., Jeanjean, R., Prommeenate, P., Krasikov, V., Nixon, P. J., Vermaas, P. J. W., Havaux, M., and Matthijs, H. C. P. (2005) Plant Cell Physiol., 46, 1433–1436.PubMedCrossRefGoogle Scholar
  11. 11.
    Mi, H., Endo, T., Schreiber, U., Ogawa, T., and Asada, K. (1992) Plant Cell Physiol., 33, 1233–1237.Google Scholar
  12. 12.
    Mi, H. L., Klughammer, C., and Schreiber, U. (2000) Plant Cell Physiol., 41, 1129–1135.PubMedCrossRefGoogle Scholar
  13. 13.
    Mi, H., Endo, T., Schreiber, U., Ogawa, T., and Asada, K. (1994) Plant Cell Physiol., 35, 163–173.Google Scholar
  14. 14.
    Elanskaya, I. V., Timofeev, K. N., Grivennikova, V. G., Kuznetsova, G. V., Davletshina, L. N., Lukashev, E. P., and Yaminsky, F. V. (2004) Biochemistry (Moscow), 69, 445–454.CrossRefGoogle Scholar
  15. 15.
    Gotoh, E., Matsumoto, M., Ogawa, K., Kobayashi, Y., and Tsuyama, M. (2010) Photosynth. Res., DOI: 10.1007/s11120-009-9525-0.Google Scholar
  16. 16.
    Oja, V., Eichelmann, H., Peterson, R. B., Rasulov, B., and Laisk, A. (2003) Photosynth. Res., 78, 1–15.PubMedCrossRefGoogle Scholar
  17. 17.
    Endo, T., Kawase, D., and Sato, F. (2005) Plant Cell Physiol., 46, 775–781.PubMedCrossRefGoogle Scholar
  18. 18.
    Hald, S., Nandha, B., Gallois, P., and Johnson, G. N. (2008) Biochim. Biophys. Acta, 1777, 433–440.PubMedCrossRefGoogle Scholar
  19. 19.
    Ogawa, T. (1991) Proc. Natl. Acad. Sci. USA, 88, 4275–4279.PubMedCrossRefGoogle Scholar
  20. 20.
    Rippka, R., Deruelles, Waterbury, J. B., Herdman, M., and Stanier, R. Y. (1979) J. Gen. Microbiol., 111, 1–61.Google Scholar
  21. 21.
    Lichtenthaler, H. K. (1987) in Methods in Enzymology, Vol. 148 (Colowick, S. P., and Kaplan, N. O., eds.) Academic Press Inc., San Diego, pp. 350–382.Google Scholar
  22. 22.
    Tamoi, M., Miyazaki, T., Fukamizo, T., and Shigeoka, S. (2005) The Plant J., 42, 504–513.CrossRefGoogle Scholar
  23. 23.
    Schreiber, U., Schliwa, U., and Bilger, W. (1986) Photosynth. Res., 10, 51–62.CrossRefGoogle Scholar
  24. 24.
    Schreiber, U., Klughammer, C., and Neubauer, C. (1988) Z. Naturforsch., 43c, 686–698.Google Scholar
  25. 25.
    Cooley, J. W., and Vermaas, W. F. J. (2001) J. Bacteriol., 183, 4251–4258.PubMedCrossRefGoogle Scholar
  26. 26.
    Berry, S., Schneider, D., Vermaas, W. F. J., and Roegner, M. (2002) Biochemistry, 41, 3422–3429.PubMedCrossRefGoogle Scholar
  27. 27.
    Mullineaux, C. W., and Allen, J. F. (1988) Biochim. Biophys. Acta, 934, 96–107.CrossRefGoogle Scholar
  28. 28.
    Nanba, M., and Katoh, S. (1984) Biochim. Biophys. Acta, 767, 396–403.CrossRefGoogle Scholar
  29. 29.
    Jones, R. W., and Whitmarsh, J. (1988) Biochim. Biophys. Acta, 933, 258–268.CrossRefGoogle Scholar
  30. 30.
    Moezelaar, R., and Stal, L. J. (1994) Arch. Microbiol., 162, 63–69.CrossRefGoogle Scholar
  31. 31.
    Kobayashi, Y., and Heber, U. (1994) Photosynth. Res., 41, 419–428.CrossRefGoogle Scholar
  32. 32.
    Trubitsin, B. V., Ptushenko, V. V., Koksharova, O. A., Mamedov, M. D., Vitukhnovskaya, L. A., Grigor’ev, I. A., Semenov, A. Yu., and Tikhonov, A. N. (2005) Biochim. Biophys. Acta, 1708, 238–249.PubMedCrossRefGoogle Scholar
  33. 33.
    Kozuleva, M. A., and Ivanov, B. N. (2010) Photosynth. Res., 105, 51–61.PubMedCrossRefGoogle Scholar
  34. 34.
    Oja, V., Eichelmann, H., Anijalg, A., Raemma, H., and Laisk, A. (2010) Photosynth. Res., 103, 153–166.PubMedCrossRefGoogle Scholar
  35. 35.
    Bolychevtseva, Yu. V., Terekhova, I. V., Roegner, M., and Karapetyan, N. V. (2007) Biochemistry (Moscow), 72, 275–281.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • Yu. V. Bolychevtseva
    • 1
    Email author
  • I. V. Elanskaya
    • 2
  • N. V. Karapetyan
    • 1
  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Department of Genetics, Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations