Advertisement

Biochemistry (Moscow)

, Volume 76, Issue 4, pp 423–426 | Cite as

Effect of glutathione on growth of the probiotic bacterium Lactobacillus reuteri

  • KiBeom Lee
  • Ho-Jin Kim
  • Beom-Seop Rho
  • Sang-Kee Kang
  • Yun-Jaie ChoiEmail author
Article

Abstract

Glutathione (GSH) is an abundant nonprotein thiol that plays numerous roles within the cell. Previously, we showed that Lactobacillus salivarius has the capacity to mount a glutathione-mediated acid-tolerance response. In the present work we provide evidence of a requirement for GSH by Lactobacillus reuteri and have studied the role of GSH during cell growth. Medium supplementation with 0.5 mM GSH as the sole sulfur source enhanced cell growth, resulting in an increase in glucose consumption, and increased cell GSH and protein contents compared with levels seen in the absence of supplementation. Moreover, L. reuteri showed enhanced amino acid consumption when grown with 0.5 mM GSH. These findings indicate that glutathione is a nutrient for bacterial growth.

Key words

amino acid consumption bacterial growth glutathione Lactobacillus reuteri protein content 

Abbreviations

FAA

free amino acid

GIT

gastrointestinal tract

GSH

glutathione

MRS

de Man-Rogosa-Sharpe

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Walter, J., Heng, N. C., Hammes, W. P., Loach, D. M., Tannock, G. W., and Hertel, C. (2003) Appl. Environ. Microbiol., 69, 2044–2051.PubMedCrossRefGoogle Scholar
  2. 2.
    Reiter, R., and Oram, J. D. (1962) J. Dairy Res., 29, 63–68.Google Scholar
  3. 3.
    Chamba, J. F., Duong, C., Fazel, A., and Prost, F. (1994) in Bacteries lactiques-Aspects Fondamentaux, Vol. 1 (De Roisart, H., and Luquet, F. M., eds.) Lavoisier, Paris.Google Scholar
  4. 4.
    Konova, N. J., Stepanova, O. N., and Akimova, A. A. (1986) Promyshlennost, 2, 32.Google Scholar
  5. 5.
    Desmazeaud, M. J., and Hernier, J. H. (1972) Eur. J. Biochem., 28, 190–198.PubMedCrossRefGoogle Scholar
  6. 6.
    Anderson, M., and Meister, A. (1983) Proc. Natl. Acad. Sci. USA, 80, 707–711.PubMedCrossRefGoogle Scholar
  7. 7.
    Douglas, K. T. (1987) in Advances in Enzymology, Vol. 59 (Meister, A., ed.) Wiley, N. Y., pp. 103–167.Google Scholar
  8. 8.
    Meister, A. (1988) J. Biol. Chem., 263, 17205–17208.PubMedGoogle Scholar
  9. 9.
    Sies, H. (1993) Eur. J. Biochem., 215, 213–219.PubMedCrossRefGoogle Scholar
  10. 10.
    Grant, C. M., Maclver, F. H., and Dawes, I. W. (1996) Curr. Genet., 29, 511–515.PubMedCrossRefGoogle Scholar
  11. 11.
    Lee, K. B., Pi, K. B., Kim, E. B., Rho, B. S., Kang, S. K., Lee, H. G., and Choi, Y. J. (2010) Biotechnol. Lett., 32, 969–972.PubMedCrossRefGoogle Scholar
  12. 12.
    Anderson, M. E. (1985) Meth. Enzymol., 113, 548–555.PubMedCrossRefGoogle Scholar
  13. 13.
    Talaat, I. M., and Aziz, E. E. (2005) Egypt J. Appl. Sci., 20, 218–231.Google Scholar
  14. 14.
    Catalino, G. A., Akihisa, K., Toru, S., Hiroshi, S., Suteaki, S., and Ken-Ichi, S. (1992) Appl. Microbiol. Biotechnol., 36, 538–540.Google Scholar
  15. 15.
    Woolley, D. W., and Merrifield, R. B. (1958) Science, 128, 238–240.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • KiBeom Lee
    • 1
  • Ho-Jin Kim
    • 1
  • Beom-Seop Rho
    • 1
  • Sang-Kee Kang
    • 2
  • Yun-Jaie Choi
    • 2
    Email author
  1. 1.Department of BiotechnologySongdo TechnoparkYeonsu-Gu, IncheonRepublic of Korea
  2. 2.Laboratory of Animal Cell Biotechnology, Departmrnt of Agricultural BiotechnologySeoul National UniversitySeoulRepublic of Korea

Personalised recommendations