Advertisement

Biochemistry (Moscow)

, Volume 76, Issue 2, pp 260–267 | Cite as

Role of transcription factors in mtDNA biogenesis mediated by thyroid hormones

  • M. V. PatrushevEmail author
  • V. E. Patrusheva
Article
  • 82 Downloads

Abstract

Exogenous thyroid hormones are regulators of cellular metabolism that involves, along with other cell structures, mitochondria. Mechanisms of the influence of thyroid hormones on the biogenesis of mtDNA are not fully understood due to their pleiotropic nature. Different ways of regulation of mitochondrial biogenesis by thyroid hormones are discussed in literature, but thyroid receptors, localized in both the nucleus and mitochondria, are the main elements of most pathways. Data on events occurring after receptor activation are rather contradictory. We investigated the degree of involvement of mitochondrial transcription factors in the biogenesis of mtDNA induced by triiodothyronine. The contribution of TFAM, TFB2M, and helicase Twinkle in thyroid-induced mtDNA biogenesis was assessed. The activation of TFAM and TFB2M expression is shown to be required for the induction of mtDNA biogenesis. The role of helicase Twinkle, the expression induction of which is also observed after triiodothyronine addition, remains unclear. The analysis of factors that activate TFAM and TFB2M expression showed that NRF-1 is the determinative regulator: deficiency of this factor leads to complete collapse of mtDNA biogenesis. However, lack of transcriptional coactivator PGC-1α did not lead to significant reduction in thyroid-induced biogenesis, whereas literature data point to its key role in the biogenesis of mitochondria. Thus, in this study the role of key transcription factors in mtDNA biogenesis induced by triiodothyronine was demonstrated for the first time in a model system.

Key words

biogenesis mtDNA thyroid hormones transcription factors triiodothyronine 

Abbreviations

mtDNA

mitochondrial DNA

PGC-1α

peroxisome proliferator-activated receptor gamma coactivator 1 alpha

siRNA

small interfering RNA

T3

triiodothyronine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Itallie, C. M. (1990) Endocrinology, 127, 55–62.PubMedCrossRefGoogle Scholar
  2. 2.
    Enriquez, J. A., Fernandez-Silva, P., and Montoya, J. (1999) Biol. Chem., 380, 737–747.PubMedCrossRefGoogle Scholar
  3. 3.
    Wrutniak, C., Cassar-Malek, Marchal, S., Rascle, A., Heusser, S., Keller, J. M., Flechon, J., Dauca, M., Samarut, J., Ghysdael, J., et al. (1995) J. Biol. Chem., 270, 16347–16354.PubMedCrossRefGoogle Scholar
  4. 4.
    Casas, F., Rochard, P., Rodier, A., Cassar-Malek, I., Marchal-Victorion, S., Wiesner, R. J., Cabello, G., and Wrutniak, C. (1999) Mol. Cell. Biol., 12, 7913–7924.Google Scholar
  5. 5.
    Gordon, J. W., Rungi, A. A., Inagaki, H., and Hood, D. A. (2001) J. Appl. Physiol., 90, 389–396.PubMedCrossRefGoogle Scholar
  6. 6.
    Takamatsu, C., Umeda, S., Ohsato, T., Ohno, T., Abe, Y., Fukuoh, A., Shinagawa, H., Hamasaki, N., and Kang, D. (2002) EMBO Rep., 3, 451–456.PubMedCrossRefGoogle Scholar
  7. 7.
    Larsson, N. G., Wang, J. M., Wilhelmsson, H., Oldfors, A., Rustin, P., Lewandoski, M., Barsh, G. S., and Clayton, D. A. (1998) Nat. Genet., 1, 231–236.CrossRefGoogle Scholar
  8. 8.
    Weitzel, J. M., Iwen, K. A., and Seitz, H. J. (2003) Exp. Physiol., 88, 121–128.PubMedCrossRefGoogle Scholar
  9. 9.
    Cotney, J., Wang, Z., and Shadel, G. S. (2007) Nucleic Acids Res., 35, 4042–4054.PubMedCrossRefGoogle Scholar
  10. 10.
    Litonin, D., Sologub, M., Shi, Y., Savkina, M., Anikin, M., Falkenberg, M., Gustafsson, C. M., and Temiakov, D. (2010) J. Biol. Chem., 285, 18129–18133.PubMedCrossRefGoogle Scholar
  11. 11.
    Bohlega, S., van Goethem, G., Al Semari, A., Lofgren, A., Al Hamed, M., van Broeckhoven, C., and Kambouris, M. (2009) Neuromuscl. Disord., 19, 845–848.CrossRefGoogle Scholar
  12. 12.
    Shutt, T. E., Lodeiro, M. F., Cotney, J., Cameron, C. E., and Shadel, G. S. (2010) Proc. Natl. Acad. Sci. USA, June 18 (electronic version).Google Scholar
  13. 13.
    Norrbom, J., Wallman, S. E., Gustafsson, T., Rundqvist, H., Jansson, E., and Sundberg, C. J. (2010) Acta Physiol. (Oxf.), 198, 71–79.CrossRefGoogle Scholar
  14. 14.
    Sologub, M., Litonin, D., Anikin, M., Mustaev, A., and Temiakov, D. (2010) Cell, 139, 934–944.CrossRefGoogle Scholar
  15. 15.
    Gaspari, M., Larsson, N. G., and Gustafsson, C. M. (2004) Biochim. Biophys. Acta, 1659, 148–152.PubMedCrossRefGoogle Scholar
  16. 16.
    Kelly, D. P., and Scarpulla, R. C. (2004) Genes Dev., 18, 357–368.PubMedCrossRefGoogle Scholar
  17. 17.
    Scrapulla, R. C. (2006) J. Cell. Biochem., 97, 673–683.CrossRefGoogle Scholar
  18. 18.
    Gleyzer, N., Vercauteren, K., and Scarpulla, R. C. (2005) Mol. Cell. Biol., 25, 1354–1366.PubMedCrossRefGoogle Scholar
  19. 19.
    Huo, L., and Scarpulla, R. C. (2001) Mol. Cell. Biol., 21, 644–654.PubMedCrossRefGoogle Scholar
  20. 20.
    Knutti, D., and Kralli, A. (2001) Trends Endocrinol. Metab., 12, 360–365.PubMedCrossRefGoogle Scholar
  21. 21.
    Cheng, S. Y., Leonard, J. L., and Davis, P. J. (2010) Endocr. Rev., 31, 139–170.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.I. Kant Russian State UniversityKaliningradRussia

Personalised recommendations