Advertisement

Biochemistry (Moscow)

, Volume 76, Issue 2, pp 253–259 | Cite as

Identification of functional peroxisome proliferator-activated receptor α response element in the human Ppsig gene

  • Jie Gu
  • Zhi Li
  • Yan SunEmail author
  • Lin Lan Wei
Article

Abstract

Peroxisome proliferator-activated receptor α (PPARα), one of the key ligand-activated nuclear receptors interacting with PPAR response elements (PPREs), may trigger the expression of PPAR-responsive genes and be involved in the transcriptional regulation of lipid metabolism, energy balance, and some diseases. Previous studies have demonstrated that the mouse Ppsig gene is a novel PPARα target gene taking a pivotal role in maintaining energy balance during fasting. Disparity between humans and rodents in their PPAR systems requires corroborating experiments to determine whether the hPpsig gene (Ppsig homologous gene in human) is also a PPARα target gene. In this work, eight putative PPREs in the promoter and first intron of hPpsig were identified. However, only one intronic PPRE could respond to PPARα by transient transfection. Furthermore, the binding activity of PPARα with this intronic PPRE was confirmed by electrophoretic mobility shift assay in vitro. This investigation might help to elucidate the transcriptional regulatory mechanisms of Ppsig in humans.

Key words

EMSA human Ppsig intronic PPREs PPARα transcriptional regulation 

Abbreviations

AOX

acyl-CoA oxidase

DIG

digoxin

DR-1

direct repeat-1

PPARα

peroxisome proliferator-activated receptor α

PPREs

PPAR response elements

RXR

retinoid X receptor

WT

wild type

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mandard, S., Muller, M., and Kersten, S. (2004) Cell. Mol. Life Sci., 61, 393–416.PubMedCrossRefGoogle Scholar
  2. 2.
    Fruchart, J. C. (2009) Atherosclerosis, 205, 1–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Kliewer, S. A., Umesono, K., Noonan, D. J., Heyman, R. A., and Evans, R. M. (1992) Nature, 358, 771–774.PubMedCrossRefGoogle Scholar
  4. 4.
    Targett-Adams, P., McElwee, M. J., Ehrenborg, E., Gustafsson, M. C., Palmer, C. N., and McLauchlan, J. (2005) Biochim. Biophys. Acta, 1728, 95–104.PubMedGoogle Scholar
  5. 5.
    Gutgesell, A., Wen, G., Konig, B., Koch, A., Spielmann, J., Stangl, G. I., Eder, K., and Ringseis, R. (2009) Biochim. Biophys. Acta, 1790, 1206–1216.PubMedGoogle Scholar
  6. 6.
    Yamaguchi, T., Matsushita, S., Motojima, K., Hirose, F., and Osumi, T. (2006) J. Biol. Chem., 281, 14232–14240.PubMedCrossRefGoogle Scholar
  7. 7.
    Yajima, H., Kobayashi, Y., Kanaya, T., and Horino, Y. (2007) Biochem. Biophys. Res. Commun., 352, 526–531.PubMedCrossRefGoogle Scholar
  8. 8.
    Mandard, S., Stienstra, R., Escher, P., Tan, N. S., Kim, I., Gonzalez, F. J., Wahli, W., Desvergne, B., Muller, M., and Kersten, S. (2007) Cell. Mol. Life Sci., 64, 1145–1157.PubMedCrossRefGoogle Scholar
  9. 9.
    Sun, Y., Ng, L., Lam, W., Lo, C. K., Chan, P. T., Yuen, Y. L., Wong, P. F., Tsang, D. S., Cheung, W. T., and Lee, S. S. (2008) Int. J. Biochem. Cell Biol., 40, 1775–1791.PubMedCrossRefGoogle Scholar
  10. 10.
    Yang, Q., Nagano, T., Shah, Y., Cheung, C., Ito, S., and Gonzalez, F. J. (2007) Toxicol. Sci., 101, 132–139.PubMedCrossRefGoogle Scholar
  11. 11.
    Kane, C. D., Francone, O. L., and Stevens, K. A. (2006) Gene, 380, 84–94.PubMedCrossRefGoogle Scholar
  12. 12.
    Guo, L., Fang, H., Collins, J., Fan, X. H., Dial, S., Wong, A., Mehta, K., Blann, E., Shi, L., Tong, W., and Dragan, Y. P. (2006) BMC Bioinform., 7, S18.CrossRefGoogle Scholar
  13. 13.
    Helledie, T., Grontved, L., Jensen, S. S., Kiilerich, P., Rietveld, L., Albrektsen, T., Boysen, M. S., Nohr, J., Larsen, L. K., Fleckner, J., Stunnenberg, H. G., Kristiansen, K., and Mandrup, S. (2002) J. Biol. Chem., 277, 26821–26830.PubMedCrossRefGoogle Scholar
  14. 14.
    Palmer, C. N., Hsu, M. H., Griffin, H. J., and Johnson, E. F. (1995) J. Biol. Chem., 270, 16114–16121.PubMedCrossRefGoogle Scholar
  15. 15.
    IJpenberg, A., Jeannin, E., Wahli, W., and Desvergne, B. (1997) J. Biol. Chem., 272, 20108–20117.PubMedCrossRefGoogle Scholar
  16. 16.
    Osada, S., Tsukamoto, T., Takiguchi, M., Mori, M., and Osumi, T. (1997) Genes Cells, 2, 315–327.PubMedCrossRefGoogle Scholar
  17. 17.
    Wen, G., Ringseis, R., and Eder, K. (2009) Biochem. Pharmacol., 79, 768–776.PubMedCrossRefGoogle Scholar
  18. 18.
    Moise, A. R., Kuksa, V., Imanishi, Y., and Palczewski, K. (2004) J. Biol. Chem., 279, 50230–50242.PubMedCrossRefGoogle Scholar
  19. 19.
    Moise, A. R., Kuksa, V., Blaner, W. S., Baehr, W., and Palczewski, K. (2005) J. Biol. Chem., 280, 27815–27825.PubMedCrossRefGoogle Scholar
  20. 20.
    Moise, A. R., Isken, A., Dominguez, M., de Lera, A. R., von Lintig, J., and Palczewski, K. (2007) Biochemistry, 46, 1811–1820.PubMedCrossRefGoogle Scholar
  21. 21.
    Schupp, M., Lefterova, M. I., Janke, J., Leitner, K., Cristancho, A. G., Mullican, S. E., Qatanani, M., Szwergold, N., Steger, D. J., Curtin, J. C., Kim, R. J., Suh, M. J., Albert, M. R., Engeli, S., Gudas, L. J., and Lazar, M. A. (2009) Proc. Natl. Acad. Sci. USA, 106, 1105–1110.PubMedCrossRefGoogle Scholar
  22. 22.
    Moise, A. R., Lobo, G. P., Erokwu, B., Wilson, D. L., Peck, D., Alvarez, S., Dominguez, M., Alvarez, R., Flask, C. A., de Lera, A. R., von Lintig, J., and Palczewski, K. (2009) FASEB J., 24, 1261–1270.PubMedCrossRefGoogle Scholar
  23. 23.
    Mukherjee, R., Jow, L., Croston, G. E., and Paterniti, J. R., Jr. (1997) J. Biol. Chem., 272, 8071–8076.PubMedCrossRefGoogle Scholar
  24. 24.
    Auboeuf, D., Rieusset, J., Fajas, L., Vallier, P., Frering, V., Riou, J. P., Staels, B., Auwerx, J., Laville, M., and Vidal, H. (1997) Diabetes, 46, 1319–1327.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.College of Life SciencesShaanxi Normal UniversityXi’anShaanxi, P. R. China

Personalised recommendations