Advertisement

Biochemistry (Moscow)

, Volume 76, Issue 2, pp 217–224 | Cite as

Free fatty acids as inducers and regulators of uncoupling of oxidative phosphorylation in liver mitochondria with participation of ADP/ATP- and aspartate/glutamate-antiporter

  • V. N. SamartsevEmail author
  • E. I. Marchik
  • L. V. Shamagulova
Article

Abstract

In liver mitochondria fatty acids act as protonophoric uncouplers mainly with participation of internal membrane protein carriers — ADP/ATP and aspartate/glutamate antiporters. In this study the values of recoupling effects of carboxyatractylate and glutamate (or aspartate) were used to assess the degree of participation of ADP/ATP and aspartate/glutamate antiporters in uncoupling activity of fatty acids. These values were determined from the ability of these recoupling agents to suppress the respiration stimulated by fatty acids and to raise the membrane potential reduced by fatty acids. Increase in palmitic and lauric acid concentration was shown to increase the degree of participation of ADP/ATP antiporter and to decrease the degree of participation of aspartate/glutamate antiporter in uncoupling to the same extent. These data suggest that fatty acids are not only inducers of uncoupling of oxidative phosphorylation, but that they also act the regulators of this process. The linear dependence of carboxyatractylate and glutamate recoupling effects ratio on palmitic and lauric acids concentration was established. Comparison of the effects of fatty acids (palmitic, myristic, lauric, capric, and caprylic having 16, 14, 12, 10, and 8 carbon atoms, respectively) has shown that, as the hydrophobicity of fatty acids decreases, the effectiveness decreases to a greater degree than the respective values of their specific uncoupling activity. The action of fatty acids as regulators of uncoupling is supposed to consist of activation of transport of their anions from the internal to the external monolayer of the internal membrane with participation of ADP/ATP antiporter and, at the same time, in inhibition of this process with the participation of aspartate/glutamate antiporter.

Key words

ADP/ATP antiporter aspartate/glutamate antiporter fatty acids liver mitochondria regulation uncoupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wojtczak, L., and Schonfeld, P. (1993) Biochim. Biophys. Acta, 1183, 41–57.PubMedCrossRefGoogle Scholar
  2. 2.
    Skulachev, V. P. (1998) Biochim. Biophys. Acta, 1363, 100–124.PubMedCrossRefGoogle Scholar
  3. 3.
    Mokhova, E. N., and Khailova, L. S. (2005) Biochemistry (Moscow), 70, 159–163.CrossRefGoogle Scholar
  4. 4.
    Di Paola, M., and Lorusso, M. (2006) Biochim. Biophys. Acta, 1757, 1330–1337.PubMedCrossRefGoogle Scholar
  5. 5.
    Andreyev, A. Yu., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., Tsofina, L. M., Volkov, N. I., and Vygodina, T. V. (1989) Eur. J. Biochem., 182, 585–592.PubMedCrossRefGoogle Scholar
  6. 6.
    Samartsev, V. N., Smirnov, A. V., Zeldi, I. P., Markova, O. V., Mokhova, E. N., and Skulachev, V. P. (1997) Biochim. Biophys. Acta, 1339, 251–257.Google Scholar
  7. 7.
    Samartsev, V. N., Mokhova, E. N., and Skulachev, V. P. (1997) FEBS Lett., 412, 179–182.PubMedCrossRefGoogle Scholar
  8. 8.
    Samartsev, V. N., Markova, O. V., Zeldi, I. P., and Smirnov, A. V. (1999) Biochemistry (Moscow), 64, 901–911.Google Scholar
  9. 9.
    Samartsev, V. N., Kozhina, O. V., and Rybakova, S. R. (2008) Biochemistry (Moscow), Suppl. Ser. A: Membr. Cell Biol., 2, 139–143.CrossRefGoogle Scholar
  10. 10.
    Samartsev, V. N., Markova, O. V., Chezganova, S. A., and Mokhova, E. N. (2001) Biochemistry (Moscow), 66, 926–931.CrossRefGoogle Scholar
  11. 11.
    Samartsev, V. N., Simonyan, R. A., Markova, O. V., Mokhova, E. N., and Skulachev, V. P. (2000) Biochim. Biophys. Acta, 1459, 179–190.PubMedCrossRefGoogle Scholar
  12. 12.
    Smith, R., and Tanford, C. (1973) Proc. Natl. Acad. Sci. USA, 70, 289–293.PubMedCrossRefGoogle Scholar
  13. 13.
    Sallee, V. L. (1974) J. Lipid Res., 15, 56–64.PubMedGoogle Scholar
  14. 14.
    Kamo, N., Muratsugu, M., Hondoh, R., and Kobatake, Y. (1979) J. Membr. Biol., 49, 105–121.PubMedCrossRefGoogle Scholar
  15. 15.
    Brown, G. C., and Brand, M. D. (1988) Biochem. J., 252, 473–479.PubMedGoogle Scholar
  16. 16.
    Samartsev, V. N., Polischuk, L. S., Paydyganov, A. P., and Zeldi, I. P. (2004) Biochemistry (Moscow), 69, 678–686.CrossRefGoogle Scholar
  17. 17.
    Girotti, A. W. (1998) J. Lipid Res., 39, 1529–1542.PubMedGoogle Scholar
  18. 18.
    Sholz, K. F., and Zakharova, T. S. (1977) Biokhimiya, 42, 809–814.Google Scholar
  19. 19.
    Schonfeld, P., Schild, L., and Kunz, W. (1989) Biochim. Biophys. Acta, 977, 266–272.PubMedCrossRefGoogle Scholar
  20. 20.
    Hamilton, J. A. (1998) J. Lipid Res., 39, 467–481.PubMedGoogle Scholar
  21. 21.
    Ptak, M., Egret-Charlier, M., Sanson, A., and Bouloussa, O. (1980) Biochim. Biophys. Acta, 600, 387–397.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. N. Samartsev
    • 1
    Email author
  • E. I. Marchik
    • 1
  • L. V. Shamagulova
    • 1
  1. 1.Mari State UniversityYoshkar-OlaRussia

Personalised recommendations