Biochemistry (Moscow)

, Volume 76, Issue 2, pp 186–195 | Cite as

Cys377 residue in NqrF subunit confers Ag+ sensitivity of Na+-translocating NADH:quinone oxidoreductase from Vibrio harveyi

  • M. S. Fadeeva
  • Y. V. Bertsova
  • L. Euro
  • A. V. BogachevEmail author


The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) is a component of the respiratory chain of various bacteria that generates a redox-driven transmembrane electrochemical Na+ potential. The Na+-NQR activity is known to be specifically inhibited by low concentrations of silver ions. Replacement of the conserved Cys377 residue with alanine in the NqrF subunit of Na+-NQR from Vibrio harveyi resulted in resistance of the enzyme to Ag+ and to other heavy metal ions. Analysis of the catalytic activity also showed that the rate of electron input into the mutant Na+-NQR decreased by about 14-fold in comparison to the wild type enzyme, whereas all other properties of NqrFC377A Na+-NQR including its stability remained unaffected.

Key words

Na+-translocating NADH:quinone oxidoreductase NqrF ferredoxin:NADP+ oxidoreductase sensitivity to heavy metals protein stability 





reduced nicotinamide hypoxanthine dinucleotide


ferredoxin:NADP+ oxidoreductase


2-n-heptyl-4-hydroxyquinoline N-oxide




Na+-translocating NADH:quinone oxidoreductase








unfolding temperature


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bogachev, A. V., and Verkhovsky, M. I. (2005) Biochemistry (Moscow), 70, 143–149.CrossRefGoogle Scholar
  2. 2.
    Zhou, W., Bertsova, Y. V., Feng, B., Tsatsos, P., Verkhovskaya, M. L., Gennis, R. B., Bogachev, A. V., and Barquera, B. (1999) Biochemistry, 38, 16246–16252.PubMedCrossRefGoogle Scholar
  3. 3.
    Hase, C. C., Fedorova, N. D., Galperin, M. Y., and Dibrov, P. A. (2001) Microbiol. Mol. Biol. Rev., 65, 353–370.PubMedCrossRefGoogle Scholar
  4. 4.
    Nakayama, Y., Hayashi, M., and Unemoto, T. (1998) FEBS Lett., 422, 240–242.PubMedCrossRefGoogle Scholar
  5. 5.
    Rich, P. R., Meinier, B., and Ward, B. (1995) FEBS Lett., 375, 5–10.PubMedCrossRefGoogle Scholar
  6. 6.
    Hayashi, M., Hirai, K., and Unemoto, T. (1995) FEBS Lett. 363, 75–77.PubMedCrossRefGoogle Scholar
  7. 7.
    Turk, K., Puhar, A., Neese, F., Bill, E., Fritz, G., and Steuber, J. (2004) J. Biol. Chem., 279, 21349–21355.PubMedCrossRefGoogle Scholar
  8. 8.
    Barquera, B., Nilges, M. J., Morgan, J. E., Ramirez-Silva, L., Zhou, W., and Gennis, R. B. (2004) Biochemistry, 43, 12322–12330.PubMedCrossRefGoogle Scholar
  9. 9.
    Juarez, O., Nilges, M. J., Gillespie, P., Cotton, J., and Barquera, B. (2008) J. Biol. Chem., 283, 33162–33167.PubMedCrossRefGoogle Scholar
  10. 10.
    Hayashi, M., Nakayama, Y., Yasui, M., Maeda, M., Furuishi, K., and Unemoto, T. (2001) FEBS Lett., 488, 5–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Bogachev, A. V., Murtasina, R. A., and Skulachev, V. P. (1997) FEBS Lett., 409, 475–477.PubMedCrossRefGoogle Scholar
  12. 12.
    Fadeeva, M. S., Nunez, C., Bertsova, Y. V., Espin, G., and Bogachev, A. V. (2008) FEMS Microbiol. Lett., 279, 116–123.PubMedCrossRefGoogle Scholar
  13. 13.
    Bourne, R. M., and Rich, P. R. (1992) Biochem. Soc. Trans., 20, 577–582.PubMedGoogle Scholar
  14. 14.
    Hayashi, M., and Unemoto, T. (1984) Biochim. Biophys. Acta, 767, 470–478.CrossRefGoogle Scholar
  15. 15.
    Yoshikawa, K., Nakayama, Y., Hayashi, M., Unemoto, T., and Mochida, K. (1999) J. Antibiot., 52, 182–185.PubMedGoogle Scholar
  16. 16.
    Tokuda, H., and Unemoto, T. (1984) J. Biol. Chem., 259, 7785–7790.PubMedGoogle Scholar
  17. 17.
    Asano, M., Hayashi, M., Unemoto, T., and Tokuda, H. (1985) Agric. Biol. Chem., 49, 2813–2817.Google Scholar
  18. 18.
    Hayashi, M., Shibata, N., Nakayama, Y., Yoshikawa, K., and Unemoto, T. (2002) Arch. Biochem. Biophys., 401, 173–177.PubMedCrossRefGoogle Scholar
  19. 19.
    Unemoto, T., Ogura, T., and Hayashi, M. (1993) Biochim. Biophys. Acta, 1183, 201–205.CrossRefGoogle Scholar
  20. 20.
    Fadeeva, M. S., Yakovtseva, E. A., Belevich, G. A., Bertsova, Y. V., and Bogachev, A. V. (2007) Arch. Microbiol., 188, 341–348.PubMedCrossRefGoogle Scholar
  21. 21.
    Bogachev, A. V., Bertsova, Y. V., Bloch, D. A., and Verkhovsky, M. I. (2006) Biochemistry, 45, 3421–3428.PubMedCrossRefGoogle Scholar
  22. 22.
    Bogachev, A. V., Kulik, L. V., Bloch, D. A., Bertsova, Y. V., Fadeeva, M. S., and Verkhovsky, M. I. (2009) Biochemistry, 48, 6291–6298.PubMedCrossRefGoogle Scholar
  23. 23.
    Bertsova, Y. V., and Bogachev, A. V. (2004) FEBS Lett., 563, 207–212.PubMedCrossRefGoogle Scholar
  24. 24.
    Bogachev, A. V., Belevich, N. P., Bertsova, Y. V., and Verkhovsky, M. I. (2009) J. Biol. Chem., 284, 5533–5538.PubMedCrossRefGoogle Scholar
  25. 25.
    Schwede, T., Kopp, J., Guex, N., and Peitsch, M. C. (2003) Nucleic Acids Res., 31, 3381–3385.PubMedCrossRefGoogle Scholar
  26. 26.
    Guex, N., and Peitsch, M. C. (1997) Electrophoresis, 18, 2714–2723.PubMedCrossRefGoogle Scholar
  27. 27.
    Forneris, F., Orru, R., Bonivento, D., Chiarelli, L. R., and Mattevi, A. (2009) FEBS J., 276, 2833–2840.PubMedCrossRefGoogle Scholar
  28. 28.
    Bogachev, A. V., Bloch, D. A., Bertsova, Y. V., and Verkhovsky, M. I. (2009) Biochemistry, 48, 6299–6304.PubMedCrossRefGoogle Scholar
  29. 29.
    Steuber, J., Krebs, W., and Dimroth, P. (1997) Eur. J. Biochem., 249, 770–776.PubMedCrossRefGoogle Scholar
  30. 30.
    Tao, M., Casutt, M., Diez, J., Fritz, G., and Steuber, J. (2008) Biochim. Biophys. Acta, 1777, S39.Google Scholar
  31. 31.
    Fadeeva, M. S., Bertsova, Y. V., Verkhovsky, M. I., and Bogachev, A. V. (2008) Biochemistry (Moscow), 73, 123–129.CrossRefGoogle Scholar
  32. 32.
    Hayashi, M., Miyoshi, T., Sato, M., and Unemoto, T. (1992) Biochim. Biophys. Acta, 1099, 145–151.PubMedCrossRefGoogle Scholar
  33. 33.
    Grzyb, J., Waloszek, A., Latowski, D., and Wieckowski, S. (2004) J. Inorg. Biochem., 98, 1338–1346.PubMedCrossRefGoogle Scholar
  34. 34.
    Aliverti, A., Piubelli, L., Zanetti, G., Lubberstedt, T., Herrmann, R. G., and Curti, B. (1993) Biochemistry, 32, 6374–6380.PubMedCrossRefGoogle Scholar
  35. 35.
    Pfenninger-Li, X. D., Albracht, S. P. J., van Belzen, R., and Dimroth, P. (1996) Biochemistry, 35, 6233–6242.PubMedCrossRefGoogle Scholar
  36. 36.
    Munro, A. W., and Noble, M. A. (1999) Meth. Mol. Biol., 131, 25–48.Google Scholar
  37. 37.
    Verkhovsky, M. I., and Bogachev, A. V. (2010) Biochim. Biophys. Acta, 1797, 738–746.PubMedCrossRefGoogle Scholar
  38. 38.
    Humphrey, W., Dalke, A., and Schulten, K. (1996) J. Mol. Graph., 14, 33–38.PubMedCrossRefGoogle Scholar
  39. 39.
    Barquera, B., Hellwig, P., Zhou, W., Morgan, J. E., Hase, C. C., Gosink, K. K., Nilges, M., Bruesehoff, P. J., Roth, A., Lancaster, C. R., and Gennis, R. B. (2002) Biochemistry, 41, 3781–3789.PubMedCrossRefGoogle Scholar
  40. 40.
    Miller, S., and Mekalanos, J. (1988) J. Bacteriol., 170, 2575–2583.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • M. S. Fadeeva
    • 1
  • Y. V. Bertsova
    • 1
  • L. Euro
    • 2
  • A. V. Bogachev
    • 1
    Email author
  1. 1.Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Research Program of Molecular Neurology, Biomedicum-HelsinkiUniversity of HelsinkiHelsinkiFinland

Personalised recommendations