Advertisement

Biochemistry (Moscow)

, Volume 76, Issue 2, pp 167–171 | Cite as

Physiological scenarios of programmed loss of mitochondrial DNA function and death of yeast

  • S. A. Kochmak
  • D. A. Knorre
  • S. S. Sokolov
  • F. F. SeverinEmail author
Review

Abstract

Recently it was convincingly shown that the yeast Saccharomyces cerevisiae does possess the basic modules of programmed cell death machinery. As programmed cell death is suicide for a unicellular organism, it is reasonable to assume that they trigger the program when the death is beneficial for the rest of the population. Not surprisingly, most of the scenarios of physiological death of S. cerevisiae, i.e. cell death in stationary culture, during meiosis, during mating, and driven by viruses are dependent on quorum sensing, meaning that they depend on the cell density. Here we also discuss possible mechanisms that govern fitness decline during replicative aging of S. cerevisiae cells. We argue that loss of mitochondrial DNA function that occurs during replicative aging is programmed and adaptive. Indeed, yeast cells with nonfunctional mitochondrial DNA are known to be extremely stress-resistant, and also the presence of a subpopulation of such cells might protect the culture from degeneration by preventing the fixation of opportunistic mutations.

Key words

aging apoptosis mitochondria petite yeast 

Abbreviations

ER

endoplasmic reticulum

PCD

programmed cell death

ROS

reactive oxygen species

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knorre, D. A., Smirnova, E. A., and Severin, F. F. (2005) Biochemistry (Moscow), 70, 264–266.CrossRefGoogle Scholar
  2. 2.
    Severin, F. F., Meer, M. V., Smirnova, E. A., Knorre, D. A., and Skulachev, V. P. (2008) Biochim. Biophys. Acta, 1783, 1350–1353.PubMedCrossRefGoogle Scholar
  3. 3.
    Chen, H., and Fink, G. R. (2006) Genes Dev., 20, 1150–1161.PubMedCrossRefGoogle Scholar
  4. 4.
    Shirtliff, M. E., Krom, B. P., Meijering, R. A., Peters, B. M., Zhu, J., Scheper, M. A., Harris, M. L., and Jabra-Rizk, M. A. (2009) Antimicrob. Agents Chemother., 53, 2392–2401.PubMedCrossRefGoogle Scholar
  5. 5.
    Buttner, S., Eisenberg, T., Herker, E., Carmona-Gutierrez, D., Kroemer, G., and Madeo, F. (2006) J. Cell Biol., 175, 521–525.PubMedCrossRefGoogle Scholar
  6. 6.
    Herker, E., Jungwirth, H., Lehmann, K. A., Maldener, C., Frohlich, K. U., Wissing, S., Buttner, S., Fehr, M., Sigrist, S., and Madeo, F. (2004) J. Cell Biol., 164, 501–507.PubMedCrossRefGoogle Scholar
  7. 7.
    Vachova, L., and Palkova, Z. (2005) J. Cell Biol., 169, 711–717.PubMedCrossRefGoogle Scholar
  8. 8.
    Palkova, Z., and Vachova, L. (2006) FEMS Microbiol. Rev., 30, 806–824.PubMedCrossRefGoogle Scholar
  9. 9.
    Cap, M., Vachova, L., and Palkova, Z. (2010) Commun. Integr. Biol., 3, 198–200.PubMedCrossRefGoogle Scholar
  10. 10.
    Kennedy, B. K., Steffen, K. K., and Kaeberlein, M. (2007) Cell Mol. Life Sci., 64, 1323–1328.PubMedCrossRefGoogle Scholar
  11. 11.
    Burtner, C. R., Murakami, C. J., Kennedy, B. K., and Kaeberlein, M. (2009) Cell Cycle, 8, 1256–1270.PubMedCrossRefGoogle Scholar
  12. 12.
    Fabrizio, P., and Longo, V. D. (2008) Biochim. Biophys. Acta, 1783, 1280–1285.PubMedCrossRefGoogle Scholar
  13. 13.
    Rockenfeller, P., and Madeo, F. (2008) Exp. Gerontol., 43, 876–881.PubMedCrossRefGoogle Scholar
  14. 14.
    Sokolov, S., Pozniakovsky, A., Bocharova, N., Knorre, D., and Severin, F. (2006) Biochim. Biophys. Acta, 1757, 660–666.PubMedCrossRefGoogle Scholar
  15. 15.
    Burhans, W. C., and Weinberger, M. (2009) Cell Cycle, 8, 2300–2302.PubMedCrossRefGoogle Scholar
  16. 16.
    Weinberger, M., Ramachandran, L., Feng, L., Sharma, K., Sun, X., Marchetti, M., Huberman, J. A., and Burhans, W. C. (2005) J. Cell Sci., 118, 3543–3553.PubMedCrossRefGoogle Scholar
  17. 17.
    Weinberger, M., Feng, L., Paul, A., Smith, D. L., Jr., Hontz, R. D., Smith, J. S., Vujcic, M., Singh, K. K., Huberman, J. A., and Burhans, W. C. (2007) PLoS ONE, 2, e748.PubMedCrossRefGoogle Scholar
  18. 18.
    Steinkraus, K. A., Kaeberlein, M., and Kennedy, B. K. (2008) Annu. Rev. Cell Dev. Biol., 24, 29–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Kaeberlein, M., Powers, R. W., III, Steffen, K. K., Westman, E. A., Hu, D., Dang, N., Kerr, E. O., Kirkland, K. T., Fields, S., and Kennedy, B. K. (2005) Science, 310, 1193–1196.PubMedCrossRefGoogle Scholar
  20. 20.
    Allen, C., Buttner, S., Aragon, A. D., Thomas, J. A., Meirelles, O., Jaetao, J. E., Benn, D., Ruby, S. W., Veenhuis, M., Madeo, F., and Werner-Washburne, M. (2006) J. Cell Biol., 174, 89–100.PubMedCrossRefGoogle Scholar
  21. 21.
    Aguilaniu, H., Gustafsson, L., Rigoulet, M., and Nystrom, T. (2003) Science, 299, 1751–1753.PubMedCrossRefGoogle Scholar
  22. 22.
    Shcheprova, Z., Baldi, S., Frei, S. B., Gonnet, G., and Barral, Y. (2008) Nature, 454, 728–734.PubMedGoogle Scholar
  23. 23.
    Severin, F. F., and Hyman, A. A. (2002) Curr. Biol., 12, 233–235.CrossRefGoogle Scholar
  24. 24.
    Pozniakovsky, A. I., Knorre, D. A., Markova, O. V., Hyman, A. A., Skulachev, V. P., and Severin, F. F. (2005) J. Cell Biol., 168, 257–269.PubMedCrossRefGoogle Scholar
  25. 25.
    Ren, Q., Yang, H., Rosinski, M., Conrad, M. N., Dresser, M. E., Guacci, V., and Zhang, Z. (2005) Mutat. Res., 570, 163–173.PubMedGoogle Scholar
  26. 26.
    Yang, H., Ren, Q., and Zhang, Z. (2006) FEMS Yeast Res., 6, 1254–1263.PubMedCrossRefGoogle Scholar
  27. 27.
    Hayashi, M., Ohkuni, K., and Yamashita, I. (1998) Yeast, 1410, 905–913.CrossRefGoogle Scholar
  28. 28.
    Schmitt, M. J., and Reiter, J. (2008) Biochim. Biophys. Acta, 1783, 1413–1417.PubMedCrossRefGoogle Scholar
  29. 29.
    Ivanovska, I., and Hardwick, J. M. (2005) J. Cell Biol., 170, 391–399.PubMedCrossRefGoogle Scholar
  30. 30.
    Madeo, F., Durchschlag, M., Kepp, O., Panaretakis, T., Zitvogel, L., Frohlich, K. U., and Kroemer, G. (2009) Cell Cycle, 8, 639–642.PubMedCrossRefGoogle Scholar
  31. 31.
    Chen, M. H., Tian, G. W., Gafni, Y., and Citovsky, V. (2005) Plant Physiol., 138, 1866–1876.PubMedCrossRefGoogle Scholar
  32. 32.
    Lai, C. Y., Jaruga, E., Borghouts, C., and Jazwinski, S. M. (2002) Genetics, 162, 73–87.PubMedGoogle Scholar
  33. 33.
    Boselli, M., Rock, J., Unal, E., Levine, S., and Amon, A. (2009) Devel. Cell, 16, 844–855.CrossRefGoogle Scholar
  34. 34.
    Veatch, J. R., McMurray, M. A., Nelson, Z. W., and Gottschling, D. E. (2009) Cell, 137, 1247–1258.PubMedCrossRefGoogle Scholar
  35. 35.
    Ferguson, L. R., and von Borstel, R. C. (1992) Mutat. Res., 265, 103–148.PubMedGoogle Scholar
  36. 36.
    Jazwinski, S. M. (2005) Gene, 354, 22–27.PubMedCrossRefGoogle Scholar
  37. 37.
    Liu, Z., and Butow, R. A. (2006) Annu. Rev. Genet., 40, 159–185.PubMedCrossRefGoogle Scholar
  38. 38.
    Koltovaya, N. A., Guerasimova, A. S., Tchekhouta, I. A., and Devin, A. B. (2003) Yeast, 20, 955–971.PubMedCrossRefGoogle Scholar
  39. 39.
    Flury, F., Borstel, R., and Williamson, D. (1976) Genetics, 83, 645–653.PubMedGoogle Scholar
  40. 40.
    Zhang, X., and Moye-Rowley, W. (2001) J. Biol. Chem., 276, 47844–47852.PubMedGoogle Scholar
  41. 41.
    Sia, R. A., Urbonas, B. L., and Sia, E. A. (2003) Curr. Genet., 44, 26–37.PubMedCrossRefGoogle Scholar
  42. 42.
    Chen, X., and Clark-Walker, G. (1999) Mol. Gen. Genet., 262, 898–908.PubMedCrossRefGoogle Scholar
  43. 43.
    Dunn, C. D., Lee, M. S., Spencer, F. A., and Jensen, R. E. (2006) Mol. Biol. Cell, 17, 213–226.PubMedCrossRefGoogle Scholar
  44. 44.
    Skulachev, V. P., and Longo, V. D. (2005) Ann. N. Y. Acad. Sci., 1057, 145–164.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • S. A. Kochmak
    • 1
  • D. A. Knorre
    • 2
  • S. S. Sokolov
    • 2
  • F. F. Severin
    • 2
    Email author
  1. 1.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations