Advertisement

Biochemistry (Moscow)

, Volume 76, Issue 1, pp 118–130 | Cite as

Mechanism of recognition and repair of damaged DNA by human 8-oxoguanine DNA glycosylase hOGG1

  • N. A. Kuznetsov
  • V. V. Koval
  • O. S. FedorovaEmail author
Review

Abstract

Recent data on structural and biochemical features of human 8-oxoguanine DNA glycosylase (hOGG1) has enabled detailed evaluation of the mechanism by which the damaged DNA bases are recognized and eliminated from the chain. Pre-steady-state kinetic studies with recording of conformational transitions of the enzyme and DNA substrate significantly contribute to understanding of this mechanism. In this review we particularly focus on the interrelationship between the conformational changes of interacting molecules and kinetics of their interaction and on the nature of each elementary step during the enzymatic process. Exhaustive analysis of these data and detailed mechanism of hOGG1-catalyzed reaction are proposed.

Key words

conformational dynamics pre-steady-state kinetics human 8-oxoguanine DNA glycosylase hOGG1 

Abbreviations

AP

apurinic/apyrimidinic site

2-aPu

2-aminopurine

BER

DNA base excision repair

Cy3 and Cy5

cyanine dyes

Dab

DABCYL; F, 2-(hydroxymethyl)-3-hydroxytetrahydrofuran

Flu

fluorescein

FRET

fluorescence resonance energy transfer

HhH

helix-hairpin-helix

hOGG1

human 8-oxoguanine DNA glycosylase

8-oxoG

7,8-dihydro-8-oxoguanine

ROS

reactive oxygen species

Trp

tryptophan.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wallace, S. S. (2002) Free Radic. Biol. Med., 33, 1–14.CrossRefPubMedGoogle Scholar
  2. 2.
    Marnett, L. J. (2000) Carcinogenesis, 21, 361–370.CrossRefPubMedGoogle Scholar
  3. 3.
    Dizdaroglu, M., Jaruga, P., Birincioglu, M., and Rodriguez, H. (2002) Free Radic. Biol. Med., 32, 1102–1115.CrossRefPubMedGoogle Scholar
  4. 4.
    Boiteux, S., and Guillet, M. (2004) DNA Repair (Amst.), 3, 1–12.CrossRefGoogle Scholar
  5. 5.
    Cooke, M. S., Evans, M. D., Dizdaroglu, M., and Lunec, J. (2003) FASEB J., 17, 1195–1214.CrossRefPubMedGoogle Scholar
  6. 6.
    Evans, M. D., Dizdaroglu, M., and Cooke, M. S. (2004) Mutat. Res., 567, 1–61.CrossRefPubMedGoogle Scholar
  7. 7.
    Xie, Y., Yang, H., Cunanan, C., Okamoto, K., Shibata, D., Pan, J., Barnes, D. E., Lindahl, T., McIlhatton, M., Fishel, R., and Miller, J. H. (2004) Cancer Res., 64, 3096–3102.CrossRefPubMedGoogle Scholar
  8. 8.
    Wan, J., Bae, M.-A., and Song, B.-J. (2004) Exp. Mol. Med., 36, 71–77.PubMedGoogle Scholar
  9. 9.
    Gu, Y., Desai, T., Gutierrez, P. L., and Lu, A.-L. (2001) Med. Sci. Monit., 7, 861–868.PubMedGoogle Scholar
  10. 10.
    Raha, S., and Robinson, B. H. (2000) Trends Biochem. Sci., 25, 502–508.CrossRefPubMedGoogle Scholar
  11. 11.
    Beckman, K. B., and Ames, B. N. (1998) Physiol. Rev., 78, 547–581.PubMedGoogle Scholar
  12. 12.
    Bernards, A. S., Miller, J. K., Bao, K. K., and Wong, I. (2002) J. Biol. Chem., 277, 20960–20964.CrossRefPubMedGoogle Scholar
  13. 13.
    Kasai, H., and Nishimura, S. (1984) Nucleic Acids Res., 12, 2137–2145.CrossRefPubMedGoogle Scholar
  14. 14.
    Shibutani, S., Takeshita, M., and Grollman, A. P. (1991) Nature, 349, 431–434.CrossRefPubMedGoogle Scholar
  15. 15.
    Grollman, A. P., and Moriya, M. (1993) Trends Genet., 9, 246–249.CrossRefPubMedGoogle Scholar
  16. 16.
    Michaels, M. L., and Miller, J. H. (1992) J. Bacteriol., 174, 6321–6325.PubMedGoogle Scholar
  17. 17.
    Fowler, R. G., White, S. J., Koyama, C., Moore, S. C., Dunn, R. L., and Schaaper, R. M. (2003) DNA Repair (Amst.), 2, 159–173.CrossRefGoogle Scholar
  18. 18.
    Sakumi, K., Furuichi, M., Tsuzuki, T., Kakuma, T., Kawabata, S., Maki, H., and Sekiguchi, M. (1993) J. Biol. Chem., 268, 23524–23530.PubMedGoogle Scholar
  19. 19.
    Slupska, M. M., Baikalov, C., Luther, W. M., Chiang, J.-H., Wei, Y.-F., and Miller, J. H. (1996) J. Bacteriol., 178, 3885–3892.PubMedGoogle Scholar
  20. 20.
    Lu, R., Nash, H. M., and Verdine, G. L. (1997) Curr. Biol., 7, 397–407.CrossRefPubMedGoogle Scholar
  21. 21.
    Cappelli, E., Hazra, T., Hill, J. W., Slupphaug, G., Bogliolo, M., and Frosina, G. (2001) Carcinogenesis, 22, 387–397.CrossRefPubMedGoogle Scholar
  22. 22.
    Radicella, J. P., Dherin, C., Desmaze, C., Fox, M. S., and Boiteux, S. (1997) Proc. Natl. Acad. Sci. USA, 94, 8010–8015.CrossRefPubMedGoogle Scholar
  23. 23.
    Aburatani, H., Hippo, Y., Ishida, T., Takashima, R., Matsuba, C., Kodama, T., Takao, M., Yasui, A., Yamamoto, K., and Asano, M. (1997) Cancer Res., 57, 2151–2156.PubMedGoogle Scholar
  24. 24.
    Rosenquist, T. A., Zharkov, D. O., and Grollman, A. P. (1997) Proc. Natl. Acad. Sci. USA, 94, 7429–7434.CrossRefPubMedGoogle Scholar
  25. 25.
    Roldan-Arjona, T., Wei, Y. F., Carter, K. C., Klungland, A., Anselmino, C., Wang, R. P., Augustus, M., and Lindahl, T. (1997) Proc. Natl. Acad. Sci. USA, 94, 8016–8020.CrossRefPubMedGoogle Scholar
  26. 26.
    Nishioka, K., Ohtsubo, T., Oda, H., Fujiwara, T., Kang, D., Sugimachi, K., and Nakabeppu, Y. (1999) Mol. Biol. Cell., 10, 1637–1652.PubMedGoogle Scholar
  27. 27.
    Klungland, A., Rosewell, I., Hollenbach, S., Larsen, E., Daly, G., Epe, B., Seeberg, E., Lindahl, T., and Barnes, D. E. (1999) Proc. Natl. Acad. Sci. USA, 96, 13300–13305.CrossRefPubMedGoogle Scholar
  28. 28.
    Boiteux, S., and Radicella, J. P. (2000) Arch. Biochem. Biophys., 377, 1–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Nash, H. M., Lu, R., Lane, W. S., and Verdine, G. L. (1997) Chem. Biol., 4, 693–702.CrossRefPubMedGoogle Scholar
  30. 30.
    Karahalil, B., Girard, P. M., Boiteux, S., and Dizdaroglu, M. (1998) Nucleic Acids Res., 26, 1228–1232.CrossRefPubMedGoogle Scholar
  31. 31.
    Fromme, J. C., Bruner, S. D., Yang, W., Karplus, M., and Verdine, G. L. (2003) Nat. Struct. Biol., 10, 204–211.CrossRefPubMedGoogle Scholar
  32. 32.
    Bjoras, M., Seeberg, E., Luna, L., Pearl, L. H., and Barrett, T. E. (2002) J. Mol. Biol., 317, 171–177.CrossRefPubMedGoogle Scholar
  33. 33.
    Bruner, S. D., Norman, D. P., and Verdine, G. L. (2000) Nature, 403, 859–866.CrossRefPubMedGoogle Scholar
  34. 34.
    Banerjee, A., Yang, W., Karplus, M., and Verdine, G. L. (2005) Nature, 434, 612–618.CrossRefPubMedGoogle Scholar
  35. 35.
    Norman, D. P., Chung, S. J., and Verdine, G. L. (2003) Biochemistry, 42, 1564–1572.CrossRefPubMedGoogle Scholar
  36. 36.
    Norman, D. P., Bruner, S. D., and Verdine, G. L. (2001) J. Am. Chem. Soc., 123, 359–360.CrossRefPubMedGoogle Scholar
  37. 37.
    Radom, C. T., Banerjee, A., and Verdine, G. L. (2007) J. Biol. Chem., 282, 9182–9194.CrossRefPubMedGoogle Scholar
  38. 38.
    Lee, S., Radom, C. T., and Verdine, G. L. (2008) J. Am. Chem. Soc., 130, 7784–7785.CrossRefPubMedGoogle Scholar
  39. 39.
    Nash, H. M., Bruner, S. D., Scharer, O. D., Kawate, T., Addona, T. A., Spooner, E., Lane, W. S., and Verdine, G. L. (1996) Curr. Biol., 6, 968–980.CrossRefPubMedGoogle Scholar
  40. 40.
    Thayer, M. M., Ahern, H., Xing, D., Cunningham, R. P., and Tainer, J. A. (1995) EMBO J., 14, 4108–4120.PubMedGoogle Scholar
  41. 41.
    Labahn, J., Scharer, O. D., Long, A., Ezaz-Nikpay, K., Verdine, G. L., and Ellenberger, T. E. (1996) Cell, 86, 321–329.CrossRefPubMedGoogle Scholar
  42. 42.
    Guan, Y., Manuel, R. C., Arvai, A. S., Parikh, S. S., Mol, C. D., Miller, J. H., Lloyd, R. S., and Tainer, J. A. (1998) Nat. Struct. Biol., 5, 1058–1064.CrossRefPubMedGoogle Scholar
  43. 43.
    Kuo, C. F., McRee, D. E., Fisher, C. L., O’Handley, S. F., Cunningham, R. P., and Tainer, J. A. (1992) Science, 258, 434–440.CrossRefPubMedGoogle Scholar
  44. 44.
    David-Cordonnier, M. H., Boiteux, S., and O’Neill, P. (2001) Nucleic Acids Res., 29, 1107–1113.CrossRefPubMedGoogle Scholar
  45. 45.
    Van der Kemp, P. A., Charbonnier, J. B., Audebert, M., and Boiteux, S. (2004) Nucleic Acids Res., 32, 570–578.CrossRefPubMedGoogle Scholar
  46. 46.
    Krishnamurthy, N., Haraguchi, K., Greenberg, M. M., and David, S. S. (2008) Biochemistry, 47, 1043–1050.CrossRefPubMedGoogle Scholar
  47. 47.
    Kuznetsov, N. A., Koval, V. V., Zharkov, D. O., Nevinsky, G. A., Douglas, K. T., and Fedorova, O. S. (2005) Nucleic Acids Res., 33, 3919–3931.CrossRefPubMedGoogle Scholar
  48. 48.
    Kuznetsov, N. A., Koval, V. V., Nevinsky, G. A., Douglas, K. T., Zharkov, D. O., and Fedorova, O. S. (2007) J. Biol. Chem., 282, 1029–1038.CrossRefPubMedGoogle Scholar
  49. 49.
    Watanabe, S. M., and Goodman, M. F. (1982) Proc. Natl. Acad. Sci. USA, 79, 6429–6433.CrossRefPubMedGoogle Scholar
  50. 50.
    Sowers, L. C., Fazakerley, G. V., Eritja, R., Karlan, B. E., and Goodman, M. F. (1986) Proc. Natl. Acad. Sci. USA, 83, 5434–5438.CrossRefPubMedGoogle Scholar
  51. 51.
    Rachofsky, E. L., Osman, R., and Ross, J. B. A. (2001) Biochemistry, 40, 946–956.CrossRefPubMedGoogle Scholar
  52. 52.
    Kampmann, M. (2005) Mol. Microbiol., 57, 889–899.CrossRefPubMedGoogle Scholar
  53. 53.
    Halford, S. E., and Szczelkun, M. D. (2002) Eur. Biophys. J., 31, 257–267.CrossRefPubMedGoogle Scholar
  54. 54.
    Friedman, J. I., and Stivers, J. T. (2010) Biochemistry, 49, 4957–4967.CrossRefPubMedGoogle Scholar
  55. 55.
    Chen, L., Haushalter, K. A., Lieber, C. M., and Verdine, G. L. (2002) Chem. Biol., 9, 345–350.CrossRefPubMedGoogle Scholar
  56. 56.
    Blainey, P. C., van Oijen, A. M., Banerjee, A., Verdine, G. L., and Xie, X. S. (2006) Proc. Natl. Acad. Sci. USA, 103, 5752–5757.CrossRefPubMedGoogle Scholar
  57. 57.
    Blainey, P. C., Luo, G., Kou, S. C., Mangel, W. F., Verdine, G. L., Bagchi, B., and Xie, X. S. (2009) Nat. Struct. Mol. Biol., 16, 1224–1229.CrossRefPubMedGoogle Scholar
  58. 58.
    Amouroux, R., Campalans, A., Epe, B., and Radicella, J. P. (2010) Nucleic Acids Res., 39, 2878–2890.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. A. Kuznetsov
    • 1
  • V. V. Koval
    • 1
  • O. S. Fedorova
    • 1
    Email author
  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations