Biochemistry (Moscow)

, Volume 76, Issue 1, pp 49–60 | Cite as

Participation of translesion synthesis DNA polymerases in the maintenance of chromosome integrity in yeast Saccharomyces cerevisiae

  • O. V. Kochenova
  • J. V. Soshkina
  • E. I. Stepchenkova
  • S. G. Inge-Vechtomov
  • P. V. ShcherbakovaEmail author


We employed a genetic assay based on illegitimate hybridization of heterothallic Saccharomyces cerevisiae strains (the α-test) to analyze the consequences for genome stability of inactivating translesion synthesis (TLS) DNA polymerases. The α-test is the only assay that measures the frequency of different types of mutational changes (point mutations, recombination, chromosome or chromosome arm loss) and temporary changes in genetic material simultaneously. All these events are manifested as illegitimate hybridization and can be distinguished by genetic analysis of the hybrids and cytoductants. We studied the effect of Polζ, Polη, and Rev1 deficiency on the genome stability in the absence of genotoxic treatment and in UV-irradiated cells. We show that, in spite of the increased percent of accurately repaired primary lesions, chromosome fragility, rearrangements, and loss occur in the absence of Polζ and Polη Our findings contribute to further refinement of the current models of translesion synthesis and the organization of eukaryotic replication fork.

Key words

Saccharomyces cerevisiae translesion synthesis recombination chromosome stability 



minimal dextrose


translesion synthesis


yeast extract




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nelson, J. R., Lawrence, C. W., and Hinkle, D. C. (1996) Science, 272, 1646–1649.CrossRefPubMedGoogle Scholar
  2. 2.
    McDonald, J. P., Levine, A. S., and Woodgate, R. (1997) Genetics, 147, 1557–1568.PubMedGoogle Scholar
  3. 3.
    Johnson, R. E., Prakash, S., and Prakash, L. (1999) Science, 283, 1001–1004.CrossRefPubMedGoogle Scholar
  4. 4.
    Acharya, N., Johnson, R. E., Prakash, S., and Prakash, L. (2006) Mol. Cell. Biol., 26, 9555–9563.CrossRefPubMedGoogle Scholar
  5. 5.
    Acharya, N., Haraska, L., Prakash, S., and Prakash, L. (2007) Mol. Cell. Biol., 27, 8401–8408.CrossRefPubMedGoogle Scholar
  6. 6.
    Johnson, R. E., Yu, S. L., Prakash, S., and Prakash, L. (2003) Genes Dev., 17, 77–87.CrossRefPubMedGoogle Scholar
  7. 7.
    Gibbs, P. E., McDonald, J., Woodgate, R., and Lawrence, C. W. (2005) Genetics, 169, 575–582.CrossRefPubMedGoogle Scholar
  8. 8.
    Haracska, L., Unk, I., Johnson, R. E., Johansson, E., Burgers, P. M., Prakash, S., and Prakash, L. (2001) Genes Dev., 15, 945–954.CrossRefPubMedGoogle Scholar
  9. 9.
    Lawrence, C. W., and Maher, V. M. (2001) Phil. Trans. Roy. Soc. Lond. B, 356, 41–46.CrossRefGoogle Scholar
  10. 10.
    Bresson, A., and Fuchs, R. P. (2002) EMBO J., 21, 3881–3887.CrossRefPubMedGoogle Scholar
  11. 11.
    Prakash, S., and Prakash, L. (2002) Genes Dev., 16, 1872–1883.CrossRefPubMedGoogle Scholar
  12. 12.
    Haracska, L., Yu, S. L., Johnson, R. E., Prakash, L., and Prakash, S. (2000) Nat. Genet., 25, 458–461.CrossRefPubMedGoogle Scholar
  13. 13.
    Washington, M. T., Johnson, R. E., Prakash, S., and Prakash, L. (1999) J. Biol. Chem., 274, 36835–36838.CrossRefPubMedGoogle Scholar
  14. 14.
    Washington, M. T., Johnson, R. E., Prakash, L., and Prakash, S. (2001) Proc. Natl. Acad. Sci. USA, 98, 8355–8360.CrossRefPubMedGoogle Scholar
  15. 15.
    Matsuda, T., Bebenek, K., Masutani, C., Hanaoka, F., and Kunkel, T. A. (2000) Nature, 404, 1011–1013.CrossRefPubMedGoogle Scholar
  16. 16.
    McCulloch, S. D., Kokoska, R. J., Masutani, C., Iwai, S., Hanaoka, F., and Kunkel, T. A. (2004) Nature, 428, 97–100.CrossRefPubMedGoogle Scholar
  17. 17.
    Johnson, R. E., Kondratick, C. M., Prakash, S., and Prakash, L. (1999) Science, 285, 263–265.CrossRefPubMedGoogle Scholar
  18. 18.
    Masutani, C., Kusumoto, R., Yamada, A., Dohmae, N., Yokoi, M., Yuasa, M., Araki, M., Iwai, S., Takio, K., and Hanaoka, F. (1999) Nature, 399, 700–704.CrossRefPubMedGoogle Scholar
  19. 19.
    Nelson, J. R., Gibbs, P. E., Nowicka, A. M., Hinkle, D. C., and Lawrence, C. W. (2000) Mol. Microbiol., 37, 549–554.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhao, B., Xie, Z., Shen, H., and Wang, Z. (2004) Nucleic Acids Res., 32, 3984–3994.CrossRefPubMedGoogle Scholar
  21. 21.
    Otsuka, C., Kunitomi, N., Iwai, S., Loakes, D., and Negishi, K. (2005) Mutat. Res., 578, 79–87.PubMedGoogle Scholar
  22. 22.
    Pages, V., Johnson, R. E., Prakash, L., and Prakash, S. (2008) Proc. Natl. Acad. Sci. USA, 105, 1170–1175.CrossRefPubMedGoogle Scholar
  23. 23.
    Lawrence, C. W. (2002) DNA Repair, 1, 425–435.CrossRefPubMedGoogle Scholar
  24. 24.
    Okada, T., Sonoda, E., Yoshimura, M., Kawano, Y., Saya, H., Kohzaki, M., and Takeda, S. (2005) Mol. Cell. Biol., 25, 6103–6111.CrossRefPubMedGoogle Scholar
  25. 25.
    Chen, J., and Fang, G. (2001) Genes Dev., 15, 1765–1770.CrossRefPubMedGoogle Scholar
  26. 26.
    Murakumo, Y., Roth, T., Ishii, H., Rasio, D., Numata, S., Croce, C. M., and Fishel, R. (2000) J. Biol. Chem., 275, 4391–4397.CrossRefPubMedGoogle Scholar
  27. 27.
    Gan, G. N., Wittschieben, J. P., Wittschieben, B. O., and Wood, R. D. (2008) Cell Res., 18, 174–183.CrossRefPubMedGoogle Scholar
  28. 28.
    Sonoda, E., Takata, M., Yamashita, Y. M., Morrison, C., and Takeda, S. (2001) Proc. Natl. Acad. Sci. USA, 98, 8388–8394.CrossRefPubMedGoogle Scholar
  29. 29.
    Van Sloun, P. P., Varlet, I., Sonneveld, E., Boei, J. J., Romeijn, R. J., Eeken, J. C., and de Wind, N. (2002) Mol. Cell. Biol., 22, 2159–2169.CrossRefPubMedGoogle Scholar
  30. 30.
    Holbeck, S. L., and Strathern, J. N. (1997) Genetics, 147, 1017–1024.PubMedGoogle Scholar
  31. 31.
    Rattray, A. J., Shafer, B. K., McGill, C. B., and Strathern, J. N. (2002) Genetics, 162, 1063–1077.PubMedGoogle Scholar
  32. 32.
    Repnevskaya, M. V., Kashkin, P. K., and Inge-Vechtomov, S. G. (1989) Russ. J. Genet., 25, 425–436.Google Scholar
  33. 33.
    Inge-Vechtomov, S. G., Repnevskaya, M. V., and Karpova, T. S. (1986) Russ. J. Genet., 22, 2625–2636.Google Scholar
  34. 34.
    Kochenova, O. V., Borhsenius, A. S., Stepchenkova, E. I., and Inge-Vechtomov, S. G. (2008) The Digest of Biological Institute’s Works, 54, 89–100.Google Scholar
  35. 35.
    Rose, M. D., Winston, F., and Hieter, P. (1990) Methods in Yeast Genetics, CSHL Press.Google Scholar
  36. 36.
    Shcherbakova, P. V., Noskov, V. N., Pshenichnov, M. R., and Pavlov, Y. I. (1996) Mutat. Res., 369, 33–44.CrossRefPubMedGoogle Scholar
  37. 37.
    Wach, A., Brachat, A., Pohlmann, R., and Philippsen, P. (1994) Yeast, 10, 1793–1808.CrossRefPubMedGoogle Scholar
  38. 38.
    Lawrence, C. W., and Christensen, R. (1976) Genetics, 82, 207–232.PubMedGoogle Scholar
  39. 39.
    Roush, A. A., Suarez, M., Friedberg, E. C., Radman, M., and Siede, W. (1998) Mol. Gen. Genet., 257, 686–692.CrossRefPubMedGoogle Scholar
  40. 40.
    Mann, H. B., and Whitney, D. R. (1947) Ann. Math. Statist., 18, 50–60.CrossRefGoogle Scholar
  41. 41.
    Mackay, V., and Manney, T. R. (1974) Genetics, 76, 255–271.PubMedGoogle Scholar
  42. 42.
    Mackay, V., and Manney, T. R. (1974) Genetics, 76, 273–288.PubMedGoogle Scholar
  43. 43.
    Strathern, J., Hicks, J., and Herskowitz, I. (1981) J. Mol. Biol., 147, 357–372.CrossRefPubMedGoogle Scholar
  44. 44.
    Astell, C. R., Ahlstrom-Jonasson, L., Smith, M., Tatchell, K., Nasmyth, K. A., and Hall, B. D. (1981) Cell, 27, 15–23.CrossRefPubMedGoogle Scholar
  45. 45.
    Inge-Vechtomov, S. G., and Repnevskaya, M. V. (1989) Genome, 31, 497–502.PubMedGoogle Scholar
  46. 46.
    Hicks, J. B., and Herskowitz, I. (1977) Genetics, 83, 245–258.Google Scholar
  47. 47.
    Strathern, J. N., Newlon, C. S., Herskovitz, I., and Hicks, J. B. (1979) Cell, 18, 309–319.CrossRefPubMedGoogle Scholar
  48. 48.
    Inge-Vechtomov, S. G., and Karpova, T. S. (1984) Russ. J. Genet., 20, 398–407.Google Scholar
  49. 49.
    Ravanat, J. L., Douki, T., and Cadet, J. (2001) J. Photochem. Photobiol. B., 63, 88–102.CrossRefPubMedGoogle Scholar
  50. 50.
    Mcllwraith, M. J., Vaisman, A., Liu, Y., Fanning, E., Woodgate, R., and West, S. C. (2005) Mol. Cell, 20, 783–792.CrossRefPubMedGoogle Scholar
  51. 51.
    Aguilera, A. (2002) EMBO J., 21, 195–201.CrossRefPubMedGoogle Scholar
  52. 52.
    Saxowsky, T. T., and Doetsch, P. W. (2006) Chem. Rev., 106, 474–488.CrossRefPubMedGoogle Scholar
  53. 53.
    Friedberg, E. C. (2005) Nat. Rev. Mol. Cell Biol., 6, 943–953.CrossRefPubMedGoogle Scholar
  54. 54.
    Waters, L. S., Minesinger, B. K., Wiltrout, M. E., D’souza, S., Woodruff, R. V., and Walker, G. C. (2009) Microbiol. Mol. Biol. Rev., 73, 134–154.CrossRefPubMedGoogle Scholar
  55. 55.
    Lindahl, T., and Nyberg, B. (1972) Biochemistry, 11, 3610–3618.CrossRefPubMedGoogle Scholar
  56. 56.
    Lindahl, T., and Nyberg, B. (1974) Biochemistry, 13, 3405–3410.CrossRefPubMedGoogle Scholar
  57. 57.
    Roche, H., Gietz, R. D., and Kunz, B. A. (1994) Genetics, 137, 637–646.PubMedGoogle Scholar
  58. 58.
    Roche, H., Gietz, R. D., and Kunz, B. A. (1995) Genetics, 140, 443–456.PubMedGoogle Scholar
  59. 59.
    Broomfield, S., Chow, B. L., and Xiao, W. (1998) Proc. Natl. Acad. Sci. USA, 95, 5678–5683.CrossRefPubMedGoogle Scholar
  60. 60.
    Glassner, B. J., Rasmussen, L. J., Najarian, M. T., Posnick, L. M., and Samson, L. D. (1998) Proc. Natl. Acad. Sci. USA, 95, 9997–10002.CrossRefPubMedGoogle Scholar
  61. 61.
    Xiao, W., Chow, B. L., Hanna, M., and Doetsch, P. W. (2001) Mutat. Res., 487, 137–147.PubMedGoogle Scholar
  62. 62.
    Harfe, B. D., and Jinks-Robertson, S. (2000) Mol. Cell, 6, 1491–1499.CrossRefPubMedGoogle Scholar
  63. 63.
    Xiao, W., Chow, B. L., Fontanie, T., Ma, L., Bacchetti, S., Hryciw, T., and Broomfield, S. (1999) Mutat. Res., 435, 1–11.PubMedGoogle Scholar
  64. 64.
    Auerbach, P., Bennett, R. A., Bailey, E. A., Krokan, H. E., and Demple, B. (2005) Proc. Natl. Acad. Sci. USA, 102, 17711–17716.CrossRefPubMedGoogle Scholar
  65. 65.
    Northam, M. R., Garg, P., Baitin, D. M., Burgers, P. M., and Shcherbakova, P. V. (2006) EMBO J., 25, 4316–4325.CrossRefPubMedGoogle Scholar
  66. 66.
    Northam, M. R., Robinson, H. A., Kochenova, O. V., and Shcherbakova, P. V. (2010) Genetics, 184, 27–42.CrossRefPubMedGoogle Scholar
  67. 67.
    Agarwal, S., Tafel, A. A., and Kanaar, R. (2006) DNA Repair, 5, 1075–1081.CrossRefPubMedGoogle Scholar
  68. 68.
    Waters, L. S., and Walker, G. C. (2006) Proc. Natl. Acad. Sci. USA, 103, 8971–8976.CrossRefPubMedGoogle Scholar
  69. 69.
    Jansen, J. G., Tsaalbi-Shtylik, A., Langerak, P., Calleja, F., Meijers, C. M., Jacobs, H., and de Wind, N. (2005) Nucleic Acids Res., 33, 356–365.CrossRefPubMedGoogle Scholar
  70. 70.
    Berdis, A. J. (2008) Biochemistry, 47, 8253–8260.CrossRefPubMedGoogle Scholar
  71. 71.
    Dumstorf, C. A., Mukhopadhyay, S., Krishnan, E., Haribabu, B., and McGregor, W. G. (2009) Mol. Cancer Res., 7, 247–254.CrossRefPubMedGoogle Scholar
  72. 72.
    Zhu, F., Jin, C. X., Song, T., Yang, J., Guo, L., and Yu, Y. N. (2003) World J. Gastroenterol., 9, 888–893.PubMedGoogle Scholar
  73. 73.
    Wittschieben, J. P., Reshmi, S. C., Gollin, S. M., and Wood, R. D. (2006) Cancer Res., 66, 134–142.CrossRefPubMedGoogle Scholar
  74. 74.
    Wittschieben, J. P., Patil, V., Glushets, V., Robinson, L. J., Kusewitt, D. F., and Wood, R. D. (2010) Cancer Res., 70, 2770–2778.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • O. V. Kochenova
    • 1
    • 2
  • J. V. Soshkina
    • 2
  • E. I. Stepchenkova
    • 2
    • 3
  • S. G. Inge-Vechtomov
    • 2
    • 3
  • P. V. Shcherbakova
    • 1
    Email author
  1. 1.Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Department of GeneticsSt. Petersburg State UniversitySt. PetersburgRussia
  3. 3.St. Petersburg Branch of Vavilov Institute of General GeneticsSt. PetersburgRussia

Personalised recommendations