Advertisement

Biochemistry (Moscow)

, Volume 76, Issue 1, pp 24–35 | Cite as

Nucleotide excision repair: DNA damage recognition and preincision complex assembly

  • N. I. RechkunovaEmail author
  • Yu. S. Krasikova
  • O. I. Lavrik
Review

Abstract

Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells counteracting genetic changes caused by DNA damage. NER removes a wide set of structurally diverse lesions such as pyrimidine dimers arising upon UV irradiation and bulky chemical adducts arising upon exposure to carcinogens or chemotherapeutic drugs. NER defects lead to severe diseases including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to understand how a certain set of proteins recognizes various DNA lesions in the context of a large excess of intact DNA. This review focuses on DNA damage recognition and following stages resulting in preincision complex assembly, the key and still most unclear steps of NER. The major models of primary damage recognition and preincision complex assembly are considered. The contribution of affinity labeling techniques in study of this process is discussed.

Key words

nucleotide excision repair repair factors damage recognition preincision complex photoaffinity labeling 

Abbreviations

a.a.

amino acid residue

Cen2

protein centrin-2

NER

nucleotide excision repair

nt

nucleotide residue

RPA

replication protein A

XP

xeroderma pigmentosum

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lindahl, T., and Wood, R. D. (1999) Science, 286, 1897–1905.CrossRefPubMedGoogle Scholar
  2. 2.
    Hoeijmakers, J. H. (2001) Nature, 411, 366–374.CrossRefPubMedGoogle Scholar
  3. 3.
    Scharer, O. D. (2003) Angew. Chem. Int. Ed. Engl., 42, 2946–2974.CrossRefPubMedGoogle Scholar
  4. 4.
    Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K., and Linn, S. (2004) Annu. Rev. Biochem., 73, 39–85.CrossRefPubMedGoogle Scholar
  5. 5.
    Wood, R. D., Mitchell, M., Sgouros, J., and Lindahl, T. (2001) Science, 291, 1284–1289.CrossRefPubMedGoogle Scholar
  6. 6.
    Gillet, L. C., and Scharer, O. D. (2006) Chem. Rev., 106, 253–276.CrossRefPubMedGoogle Scholar
  7. 7.
    Sweder, K. S., and Hanawalt, P. C. (1993) Science, 262, 439–440.CrossRefPubMedGoogle Scholar
  8. 8.
    Aboussekhra, A., Biggerstaff, M., Shivji, M. K., Vilpo, J. A., Moncollin, V., Podust, V. N., Protic, M., Hubscher, U., Egly, J. M., and Wood, R. D. (1995) Cell, 80, 859–681.CrossRefPubMedGoogle Scholar
  9. 9.
    Mu, D., Park, C. H., Matsunaga, T. D., Hsu, S. J., Reardon, T., and Sancar, A. (1995) J. Biol. Chem., 270, 2415–2418.CrossRefPubMedGoogle Scholar
  10. 10.
    Araujo, S. J., Tirode, F., Coin, F., Pospiech, H., Syvaoja, J. E., Stucki, M., Hubscher, U., Egly, J. M., and Wood, R. D. (2000) Genes Dev., 14, 349–359.PubMedGoogle Scholar
  11. 11.
    Hoogstraten, D., Nigg, A. L., Heath, H. L., Mullenders, H., van Driel, R., Hoeijmakers, J. H., Vermeulen, W., and Houtsmuller, A. B. (2002) Mol. Cell, 10, 1163–1174.CrossRefPubMedGoogle Scholar
  12. 12.
    Rademakers, S., Volker, M., Hoogstraten, D., Nigg, A. L., Mone, M. J., van Zeeland, A. A., Hoeijmakers, J. H., Houtsmuller, A. B., and Vermeulen, W. (2003) Mol. Cell. Biol., 23, 5755–5767.CrossRefPubMedGoogle Scholar
  13. 13.
    Hoogstraten, D., Bergink, S., Verbiest, V. H., Luijsterburg, M. S., Geverts, B., Raams, A., Dinant, C., Hoeijmakers, J. H., Vermeulen, W., and Houtsmuller, A. B. (2008) J. Cell. Sci., 121, 2850–2859.CrossRefPubMedGoogle Scholar
  14. 14.
    Shimizu, Y., Iwai, S., Hanaoka, F., and Sugasawa, K. (2003) EMBO J., 22, 164–173.CrossRefPubMedGoogle Scholar
  15. 15.
    D’Errico, M., Parlanti, E., Teson, M., de Jesus, B. M., Degan, P., Calcagnile, A., Jaruga, P., Bjoras, M., Crescenzi, M., Pedrini, A. M., Egly, J. M., Zambruno, G., Stefanini, M., Dizdaroglu, M., and Dogliotti, E. (2006) EMBO J., 25, 4305–4315.CrossRefPubMedGoogle Scholar
  16. 16.
    Hiyama, H., Yokoi, M., Masutani, C., Sugasawa, K., Maekawa, T., Tanaka, K., Hoeijmakers, J. H., and Hanaoka, F. (1999) J. Biol. Chem., 274, 28019–28025.CrossRefPubMedGoogle Scholar
  17. 17.
    Schaeffer, L., Roy, R., Humbert, S., Moncollin, V., Vermeulen, W., Hoeijmakers, J. H., Chambon, P., and Egly, J. M. (1993) Science, 260, 58–63.CrossRefPubMedGoogle Scholar
  18. 18.
    Matsuno, M., Kose, H., Okabe, M., and Hiromi, Y. (2007) Genes Cells, 12, 1289–1300.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang, N., Liu, X., Li, L., and Legerski, R. (2007) DNA Repair, 6, 1670–1678.CrossRefPubMedGoogle Scholar
  20. 20.
    Klungland, A., Hoss, M., Gunz, D., Constantinou, A., Clarkson, S. G., Doetsch, P. W., Bolton, P. H., Wood, R. D., and Lindahl, T. (1999) Mol. Cell, 3, 33–42.CrossRefPubMedGoogle Scholar
  21. 21.
    Bomgarden, R. D., Lupardus, P. J., Soni, D. V., Yee, M. C., Ford, J. M., and Cimprich, K. A. (2006) EMBO J., 25, 2605–2614.CrossRefPubMedGoogle Scholar
  22. 22.
    Wu, X., Shell, S. M., Yan, Z., and Zou, Y. (2006) Cancer Res., 66, 2997–3005.CrossRefPubMedGoogle Scholar
  23. 23.
    Wu, X., Shell, S. M., Liu, Y., and Zou, Y. (2007) Oncogene, 26, 757–764.CrossRefPubMedGoogle Scholar
  24. 24.
    Wold, M. S. (1997) Annu. Rev. Biochem., 66, 61–92.CrossRefPubMedGoogle Scholar
  25. 25.
    Fanning, E., Klimovich, V., and Nager, A. R. (2006) Nucleic Acids Res., 34, 4126–4137.CrossRefPubMedGoogle Scholar
  26. 26.
    Pestryakov, P. E., and Lavrik, O. I. (2008) Biochemistry (Moscow), 73, 1388–1404.CrossRefGoogle Scholar
  27. 27.
    Fitch, M. E., Nakajima, S., Yasui, A., and Ford, J. M. (2003) J. Biol. Chem., 278, 46906–46910.CrossRefPubMedGoogle Scholar
  28. 28.
    Wang, Q. E., Zhu, Q., Wani, G., Chen, J., and Wani, A. A. (2004) Carcinogenesis, 25, 1033–1043.CrossRefPubMedGoogle Scholar
  29. 29.
    Moser, J., Volker, M., Kool, H., Alekseev, S., Vrieling, H., Yasui, A., van Zeeland, A. A., and Mullenders, L. H. (2005) DNA Repair, 4, 571–582.CrossRefPubMedGoogle Scholar
  30. 30.
    Nishi, R., Alekseev, S., Dinant, C., Hoogstraten, D., Houtsmuller, A. B., Hoeijmakers, J. H., Vermeulen, W., Hanaoka, F., and Sugasawa, K. (2009) DNA Repair, 8, 767–776.CrossRefPubMedGoogle Scholar
  31. 31.
    Hey, T., Lipps, G., Sugasawa, K., Iwai, S., Hanaoka, F., and Krauss, G. (2002) Biochemistry, 41, 6583–6587.CrossRefPubMedGoogle Scholar
  32. 32.
    Sugasawa, K., Ng, J. M., Masutani, C., Iwai, S., van der Spek, P. J., Eker, A. P., Hanaoka, F., Bootsma, D., and Hoeijmakers, J. H. (1998) Mol. Cell, 2, 223–232.CrossRefPubMedGoogle Scholar
  33. 33.
    Batty, D., Rapic-Otrin, V. A., Levine, S., and Wood, R. D. (2000) J. Mol. Biol., 300, 275–290.CrossRefPubMedGoogle Scholar
  34. 34.
    Sugasawa, K., Shimizu, Y., Iwai, S., and Hanaoka, F. (2002) DNA Repair, 1, 95–107.CrossRefPubMedGoogle Scholar
  35. 35.
    Riedl, T., Hanaoka, F., and Egly, J. M. (2003) EMBO J., 22, 5293–5303.CrossRefPubMedGoogle Scholar
  36. 36.
    Volker, M., Mone, M. J., Karmakar, P., van Hoffen, A., Schul, W., Vermeulen, W., Hoeijmakers, J. H., van Driel, R., van Zeeland, A. A., and Mullenders, L. H. (2001) Mol. Cell., 8, 213–224.CrossRefPubMedGoogle Scholar
  37. 37.
    Reardon, J. T., and Sancar, A. (2003) Genes Dev., 17, 2539–2551.CrossRefPubMedGoogle Scholar
  38. 38.
    Maltzeva, E. A., Rechkunova, N. I., Petruseva, I. O., Sil’nikov, V. N., Vermeulen, V., and Lavrik, O. I. (2006) Biochemistry (Moscow), 71, 270–278.CrossRefGoogle Scholar
  39. 39.
    Kesseler, K. J., Kaufmann, W. K., Reardon, J. T., Elston, T. C., and Sancar, A. (2007) J. Theor. Biol., 249, 361–375.CrossRefPubMedGoogle Scholar
  40. 40.
    Krasikova, U. S., Rechkunova, N. I., Maltzeva, E. A., Petruseva, I. O., Sil’nikov, V. N., Zatsepin, T. S., Oretskaya, T. S., Sherer, O. D., and Lavrik, O. I. (2008) Biochemistry (Moscow), 73, 886–896.CrossRefGoogle Scholar
  41. 41.
    Van der Spek, P. J., Eker, A., Rademakers, S., Visser, C., Sugasawa, K., Masutani, C., Hanaoka, F., Bootsma, D., and Hoeijmakers, J. H. (1996) Nucleic Acids Res., 24, 2551–2559.CrossRefPubMedGoogle Scholar
  42. 42.
    Araki, M., Masutani, C., Takemura, M., Uchida, A., Sugasawa, K., Kondoh, J., Ohkuma, Y., and Hanaoka, F. (2001) J. Biol. Chem., 276, 18665–18672.CrossRefPubMedGoogle Scholar
  43. 43.
    Ng, J. M., Vermeulen, W., van der Horst, G. T., Bergink, S., Sugasawa, K., Vrieling, H., and Hoeijmakers, J. H. (2003) Genes Dev., 17, 1630–1645.CrossRefPubMedGoogle Scholar
  44. 44.
    Sugasawa, K., Masutani, C., Uchida, A., Maekawa, T., van der Spek, P. J., Bootsma, D., Hoeijmakers, J. H., and Hanaoka, F. (1996) Mol. Cell. Biol., 16, 4852–4861.PubMedGoogle Scholar
  45. 45.
    Masutani, C., Araki, M., Sugasawa, K., van der Spek, P. J., Yamada, A., Uchida, A., Maekawa, T., Bootsma, D., Hoeijmakers, J. H., and Hanaoka, F. (1997) Mol. Cell. Biol., 17, 6915–6923.PubMedGoogle Scholar
  46. 46.
    Sugasawa, K., Ng, J. M., Masutani, C., Maekawa, T., Uchida, A., van der Spek, P. J., Eker, A. P., Rademakers, S., Visser, C., Aboussekhra, A., Wood, R. D., Hanaoka, F., Bootsma, D., and Hoeijmakers, J. H. (1997) Mol. Cell. Biol., 17, 6924–6931.PubMedGoogle Scholar
  47. 47.
    Sugasawa, K., Okuda, Y., Saijo, M., Nishi, R., Matsuda, N., Chu, G., Mori, T., Iwai, S., Tanaka, K., and Hanaoka, F. (2005) Cell, 121, 387–400.CrossRefPubMedGoogle Scholar
  48. 48.
    Nishi, R., Okuda, Y., Watanabe, E., Mori, T., Iwai, S., Masutani, C., Sugasawa, K., and Hanaoka, F. (2005) Mol. Cell. Biol., 25, 5664–5674.CrossRefPubMedGoogle Scholar
  49. 49.
    Kusumoto, R., Masutani, C., Sugasawa, K., Iwai, S., Araki, M., Uchida, A., Mizukoshi, T., and Hanaoka, F. (2001) Mutat. Res., 485, 219–227.PubMedGoogle Scholar
  50. 50.
    Sugasawa, K., Okamoto, T., Shimizu, Y., Masutani, C., Iwai, S., and Hanaoka, F. (2001) Genes Dev., 15, 507–521.CrossRefPubMedGoogle Scholar
  51. 51.
    Buterin, T., Meyer, C., Giese, B., and Naegeli, H. (2005) Chem. Biol., 12, 913–922.CrossRefPubMedGoogle Scholar
  52. 52.
    Maillard, O., Solyom, S., and Naegeli, H. (2007) PLoS Biol., 5, e79.CrossRefPubMedGoogle Scholar
  53. 53.
    Min, J.-H., and Pavletich, N. P. (2007) Nature, 449, 570–575.CrossRefPubMedGoogle Scholar
  54. 54.
    Maillard, O., Camenisch, U., Blagoev, K. B., and Naegeli, H. (2008) Mutat. Res., 658, 271–286.CrossRefPubMedGoogle Scholar
  55. 55.
    Camenisch, U., Trautlein, D., Clement, F. C., Fei, J., Leitenstorfer, A., Ferrando-May, E., and Naegeli, H. (2009) EMBO J., 28, 2387–2399.CrossRefPubMedGoogle Scholar
  56. 56.
    Sugasawa, K., Akagi, J., Nishi, R., Iwai, S., and Hanaoka, F. (2009) Mol. Cell., 36, 642–653.CrossRefPubMedGoogle Scholar
  57. 57.
    Blagoev, K. B., Alexandrov, B. S., Goodwin, E. H., and Bishop, A. R. (2006) DNA Repair, 5, 863–867.CrossRefPubMedGoogle Scholar
  58. 58.
    Maillard, O., Camenisch, U., Clement, F. C., Blagoev, K. B., and Naegeli, H. (2007) Trends Biochem. Sci., 32, 494–499.CrossRefPubMedGoogle Scholar
  59. 59.
    Janicijevic, A., Sugasawa, K., Shimizu, Y., Hanaoka, F., Wijgers, N., Djurica, M., Hoeijmakers, J. H., and Wyman, C. (2003) DNA Repair, 2, 325–336.CrossRefPubMedGoogle Scholar
  60. 60.
    Yokoi, M., Masutani, C., Maekawa, T., Sugasawa, K., Ohkuma, Y., and Hanaoka, F. (2000) J. Biol. Chem., 275, 9870–9875.CrossRefPubMedGoogle Scholar
  61. 61.
    Yang, Z. G., Liu, Y., Mao, L. Y., Zhang, J. T., and Zou, Y. (2002) Biochemistry, 41, 13012–13020.CrossRefPubMedGoogle Scholar
  62. 62.
    Li, L., Lu, X., Peterson, C. A., and Legerski, R. J. (1995) Mol. Cell. Biol., 15, 5396–5402.PubMedGoogle Scholar
  63. 63.
    Li, L., Elledge, S. J., Peterson, C. A., Bales, E. S., and Legerski, R. J. (1994) Proc. Natl. Acad. Sci. USA, 91, 5012–5016.CrossRefPubMedGoogle Scholar
  64. 64.
    Park, C. H., Mu, D., Reardon, J. T., and Sancar, A. (1995) J. Biol. Chem., 270, 4896–4902.CrossRefPubMedGoogle Scholar
  65. 65.
    Missura, M., Buterin, T., Hindges, R., Hubscher, U., Kasparkova, J., Brabec, V., and Naegeli, H. (2001) EMBO J., 20, 3554–3564.CrossRefPubMedGoogle Scholar
  66. 66.
    Schweizer, U., Hey, T., Lipps, G., and Krauss, G. (1999) Nucleic Acids Res., 27, 3183–3189.CrossRefPubMedGoogle Scholar
  67. 67.
    Wang, M., Mahrenholz, A., and Lee, S. (2000) Biochemistry, 39, 6433–6439.CrossRefPubMedGoogle Scholar
  68. 68.
    Hey, T., Lipps, G., and Krauss, G. (2001) Biochemistry, 40, 2901–2910.CrossRefPubMedGoogle Scholar
  69. 69.
    Camenisch, U., Dip, R., Schumacher, S. B., Schuler, B., and Naegeli, H. (2006) Nat. Struct. Mol. Biol., 13, 278–284.CrossRefPubMedGoogle Scholar
  70. 70.
    Yang, Z., Roginskaya, M., Colis, L. C., Basu, A. K., Shell, S. M., Liu, Y., Musich, P. R., Harris, C. M., Harris, T. M., and Zou, Y. (2006) Biochemistry, 45, 15921–15930.CrossRefPubMedGoogle Scholar
  71. 71.
    Saijo, M., Kuraoka, I., Masutani, C., Hanaoka, F., and Tanaka, K. (1996) Nucleic Acids Res., 24, 4719–4724.CrossRefPubMedGoogle Scholar
  72. 72.
    Orelli, B., McClendon, T. B., Tsodikov, O. V., Ellenberger, T., Niedernhofer, L. J., and Scharer, O. D. (2010) J. Biol. Chem., 285, 3705–3712.CrossRefPubMedGoogle Scholar
  73. 73.
    Lavrik, O. I., Kolpashchikov, D. M., Weisshart, K., Nasheuer, H. P., Khodyreva, S. N., and Favre, A. (1999) Nucleic Acids Res., 27, 4235–4240.CrossRefPubMedGoogle Scholar
  74. 74.
    Bochkareva, E., Korolev, S., Lees-Miller, S. P., and Bochkarev, A. (2002) EMBO J., 21, 1855–1863.CrossRefPubMedGoogle Scholar
  75. 75.
    Lavrik, O. I., Nasheuer, H. P., Weisshart, K., Wold, M. S., Prasad, R., Beard, W. A., Wilson, S. H., and Favre, A. (1998) Nucleic Acids Res., 26, 602–607.CrossRefPubMedGoogle Scholar
  76. 76.
    De Laat, W. L., Appeldoorn, E., Sugasawa, K., Weterings, E., Jaspers, N. G., and Hoeijmakers, J. H. (1998) Genes Dev., 12, 2598–2609.CrossRefPubMedGoogle Scholar
  77. 77.
    Kolpashchikov, D. M., Khodyreva, S. N., Khlimankov, D. Y., Wold, M. S., Favre, A., and Lavrik, O. I. (2001) Nucleic Acids Res., 29, 373–379.CrossRefPubMedGoogle Scholar
  78. 78.
    Tapias, A., Auriol, J., Forget, D., Enzlin, J. H., Scharer, O. D., Coin, F., Coulombe, B., and Egly, J. M. (2004) J. Biol. Chem., 279, 19074–19083.CrossRefPubMedGoogle Scholar
  79. 79.
    Hermanson-Miller, I. L., and Turchi, J. J. (2002) Biochemistry, 41, 2402–2408.CrossRefPubMedGoogle Scholar
  80. 80.
    Lee, J. H., Park, C. J., Arunkumar, A. I., Chazin, W. J., and Choi, B. S. (2003) Nucleic Acids Res., 31, 4747–4754.CrossRefPubMedGoogle Scholar
  81. 81.
    Patrick, S. M., and Turchi, J. J. (2002) J. Biol. Chem., 277, 16096–16101.CrossRefPubMedGoogle Scholar
  82. 82.
    Gomes, X. V., and Burgers, P. M. (2001) J. Biol. Chem., 276, 34768–34775.CrossRefPubMedGoogle Scholar
  83. 83.
    Della Vecchia, M. J., Croteau, D. L., Skorvaga, M., Dezhurov, S. V., Lavrik, O. I., and van Houten, B. (2004) J. Biol. Chem., 279, 45245–45256.CrossRefGoogle Scholar
  84. 84.
    Khodyreva, S. N., and Lavrik, O. I. (2005) Curr. Med. Chem., 12, 641–655.CrossRefPubMedGoogle Scholar
  85. 85.
    Rechkunova, N. I., and Lavrik, O. I. (2010) Subcell. Biochem., 50, 251–277.CrossRefPubMedGoogle Scholar
  86. 86.
    Maltseva, E. A., Rechkunova, N. I., Gillet, L. C., Petruseva, I. O., Scharer, O. D., and Lavrik, O. I. (2007) Biochim. Biophys. Acta, 1770, 781–789.PubMedGoogle Scholar
  87. 87.
    Heflich, R. H., and Neft, R. E. (1994) Mutat. Res., 318, 73–114.PubMedGoogle Scholar
  88. 88.
    Gillet, L. C., Alzeer, J., and Scharer, O. D. (2005) Nucleic Acids Res., 33, 1961–1969.CrossRefPubMedGoogle Scholar
  89. 89.
    Shivji, M. K., Moggs, J. G., Kuraoka, I., and Wood, R. D. (1999) Meth. Mol. Biol., 113, 373–392.Google Scholar
  90. 90.
    Gunz, D., Hess, M. T., and Naegeli, H. (1996) J. Biol. Chem., 271, 25089–25098.CrossRefPubMedGoogle Scholar
  91. 91.
    Geacintov, N. E., Broyde, S., Buterin, T., Naegeli, H., Wu, M., Yan, S., and Patel, D. J. (2002) Biopolymers, 65, 202–210.CrossRefPubMedGoogle Scholar
  92. 92.
    Mocquet, V., Kropachev, K., Kolbanovskiy, M., Kolbanovskiy, A., Tapias, A., Cai, Y., Broyde, S., Geacintov, N. E., and Egly, J. M. (2007) EMBO J., 26, 2923–2932.CrossRefPubMedGoogle Scholar
  93. 93.
    Maltseva, E. A., Rechkunova, N. I., Petruseva, I. O., Vermeulen, W., Scharer, O. D., and Lavrik, O. I. (2008) Bioorg. Chem., 36, 77–84.CrossRefPubMedGoogle Scholar
  94. 94.
    Petruseva, I. O., Tikhanovich, I. S., Chelobanov, B. P., and Lavrik, O. I. (2008) J. Mol. Recognit., 21, 154–162.CrossRefPubMedGoogle Scholar
  95. 95.
    Meisenheimer, K. M., and Koch, T. H. (1997) Crit. Rev. Biochem. Mol. Biol., 32, 101–140.CrossRefPubMedGoogle Scholar
  96. 96.
    Nakano, T., Katafuchi, A., Shimizu, R., Terato, H., Suzuki, T., Tauchi, H., Makino, K., Skorvaga, M., van Houten, B., and Ide, H. (2005) Nucleic Acids Res., 33, 2181–2191.CrossRefPubMedGoogle Scholar
  97. 97.
    Wakasugi, M., and Sancar, A. (1999) J. Biol. Chem., 274, 18759–18768.CrossRefPubMedGoogle Scholar
  98. 98.
    Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Petruseva, I. O., and Lavrik, O. I. (2010) Nucleic Acids Res., 38, 8083–8094.CrossRefPubMedGoogle Scholar
  99. 99.
    Salas, T. R., Petruseva, I., Lavrik, O., Bourdoncle, A., Mergny, J. L., Favre, A., and Saintome, C. (2006) Nucleic Acids Res., 34, 4857–4865.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. I. Rechkunova
    • 1
    Email author
  • Yu. S. Krasikova
    • 1
  • O. I. Lavrik
    • 1
  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations