Advertisement

Biochemistry (Moscow)

, Volume 76, Issue 1, pp 16–23 | Cite as

Multiple DNA damage recognition factors involved in mammalian nucleotide excision repair

  • K. SugasawaEmail author
Review

Abstract

The nucleotide excision repair (NER) subpathway operating throughout the mammalian genome is a versatile DNA repair system that can remove a wide variety of helix-distorting base lesions. This system contributes to prevention of blockage of DNA replication by the lesions, thereby suppressing mutagenesis and carcinogenesis. Therefore, it is of fundamental significance to understand how the huge genome can be surveyed for occurrence of a small number of lesions. Recent studies have revealed that this difficult task seems to be accomplished through sequential actions of multiple DNA damage recognition factors, including UV-DDB, XPC, and TFIIH. Notably, these factors adopt completely different strategies to recognize DNA damage. XPC detects disruption and/or destabilization of the base pairing, which ensures a broad spectrum of substrate specificity for global genome NER. In contrast, UV-DDB directly recognizes particular types of lesions, such as UV-induced photoproducts, thereby vitally recruiting XPC as well as further extending the substrate specificity. After DNA binding by XPC, moreover, the helicase activity associated with TFIIH scans a DNA strand to make a final search for the presence of aberrant chemical modifications of DNA. The combination of these different strategies makes a crucial contribution to simultaneously achieving efficiency, accuracy, and versatility of the entire repair system.

Key words

nucleotide excision repair DNA damage recognition xeroderma pigmentosum XPC UV-DDB TFIIH 

Abbreviations

AAF

N-acetyl-2-aminofluorene

BHD

β-hairpin domain

CPDs

cyclobutane pyrimidine dimers

CS

Cockayne syndrome

NER

nucleotide excision repair

PCNA

proliferating cell nuclear antigen

6-4PPs

pyrimidine-pyrimidone (6-4) photoproducts

RFC

replication factor C

RPA

replication protein A

TGD

transglutaminase-homology domain

TTD

trichothiodystrophy

UV-DDB

UV-damaged DNA-binding protein consisting of two subunits (DDB1 and DDB2)

XP

xeroderma pigmentosum

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2011_9355_MOESM1_ESM.pdf (282 kb)
Supplementary material, approximately 282 KB.

References

  1. 1.
    Friedberg, E. C., Walker, G. C., Siede, W., Wood, R. D., Schultz, R. A., and Ellenberger, T. (2006) DNA Repair and Mutagenesis, Second Edition, ASM Press, Washington, DC.Google Scholar
  2. 2.
    Gillet, L. C., and Scharer, O. D. (2006) Chem. Rev., 106, 253–276.CrossRefPubMedGoogle Scholar
  3. 3.
    Bootsma, D., Kraemer, K. H., Cleaver, J. E., and Hoeijmakers, J. H. J. (2001) in The Metabolic and Molecular Basis of Inherited Disease, Vol. 1 (Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds.) McGraw-Hill Book Co., New York, NY, pp. 677–703.Google Scholar
  4. 4.
    Svejstrup, J. Q. (2002) Nat. Rev. Mol. Cell. Biol., 3, 21–29.CrossRefPubMedGoogle Scholar
  5. 5.
    Tornaletti, S., and Hanawalt, P. C. (1999) Biochimie, 81, 139–146.CrossRefPubMedGoogle Scholar
  6. 6.
    Van Hoffen, A., Natarajan, A. T., Mayne, L. V., van Zeeland, A. A., Mullenders, L. H. F., and Venema, J. (1993) Nucleic Acids Res., 21, 5890–5895.CrossRefPubMedGoogle Scholar
  7. 7.
    Venema, J., Mullenders, L. H. F., Natarajan, A. T., van Zeeland, A. A., and Mayne, L. V. (1990) Proc. Natl. Acad. Sci. USA, 87, 4707–4711.CrossRefPubMedGoogle Scholar
  8. 8.
    Riedl, T., Hanaoka, F., and Egly, J.-M. (2003) EMBO J., 22, 5293–5303.CrossRefPubMedGoogle Scholar
  9. 9.
    Sugasawa, K., Ng, J. M. Y., Masutani, C., Iwai, S., van der Spek, P. J., Eker, A. P. M., Hanaoka, F., Bootsma, D., and Hoeijmakers, J. H. J. (1998) Mol. Cell, 2, 223–232.CrossRefPubMedGoogle Scholar
  10. 10.
    Volker, M., Mone, M. J., Karmakar, P., van Hoffen, A., Schul, W., Vermeulen, W., Hoeijmakers, J. H. J., van Driel, R., van Zeeland, A. A., and Mullenders, L. H. F. (2001) Mol. Cell, 8, 213–224.CrossRefPubMedGoogle Scholar
  11. 11.
    Fitch, M. E., Nakajima, S., Yasui, A., and Ford, J. M. (2003) J. Biol. Chem., 278, 46906–46910.CrossRefPubMedGoogle Scholar
  12. 12.
    Moser, J., Volker, M., Kool, H., Alekseev, S., Vrieling, H., Yasui, A., van Zeeland, A. A., and Mullenders, L. H. F. (2005) DNA Repair (Amst.), 4, 571–582.CrossRefGoogle Scholar
  13. 13.
    Wang, Q. E., Zhu, Q., Wani, G., Chen, J., and Wani, A. A. (2004) Carcinogenesis, 25, 1033–1043.CrossRefPubMedGoogle Scholar
  14. 14.
    Schaeffer, L., Moncollin, V., Roy, R., Staub, A., Mezzina, M., Sarasin, A., Weeda, G., Hoeijmakers, J. H. J., and Egly, J.-M. (1994) EMBO J., 13, 2388–2392.PubMedGoogle Scholar
  15. 15.
    Schaeffer, L., Roy, R., Humbert, S., Moncollin, V., Vermeulen, W., Hoeijmakers, J. H. J., Chambon, P., and Egly, J.-M. (1993) Science, 260, 58–63.CrossRefPubMedGoogle Scholar
  16. 16.
    Evans, E., Fellows, J., Coffer, A., and Wood, R. D. (1997) EMBO J., 16, 625–638.CrossRefPubMedGoogle Scholar
  17. 17.
    Evans, E., Moggs, J. G., Hwang, J. R., Egly, J.-M., and Wood, R. D. (1997) EMBO J., 16, 6559–6573.CrossRefPubMedGoogle Scholar
  18. 18.
    Mu, D., Wakasugi, M., Hsu, D. S., and Sancar, A. (1997) J. Biol. Chem., 272, 28971–28979.CrossRefPubMedGoogle Scholar
  19. 19.
    Cloud, K. G., Shen, B., Strniste, G. F., and Park, M. S. (1995) Mutat. Res., 347, 55–60.CrossRefPubMedGoogle Scholar
  20. 20.
    O’Donovan, A., Davies, A. A., Moggs, J. G., West, S. C., and Wood, R. D. (1994) Nature, 371, 432–435.CrossRefPubMedGoogle Scholar
  21. 21.
    Sijbers, A. M., de Laat, W. L., Ariza, R. R., Biggerstaff, M., Wei, Y.-F., Moggs, J. G., Carter, K. C., Shell, B. K., Evans, E., de Jong, M. C., Rademakers, S., de Rooij, J., Jaspers, N. G. J., Hoeijmakers, J. H. J., and Wood, R. D. (1996) Cell, 86, 811–822.CrossRefPubMedGoogle Scholar
  22. 22.
    Aboussekhra, A., Biggerstaff, M., Shivji, M. K. K., Vilpo, J. A., Moncollin, V., Podust, V. N., Protic, M., Hubscher, U., Egly, J.-M., and Wood, R. D. (1995) Cell, 80, 859–868.CrossRefPubMedGoogle Scholar
  23. 23.
    Araujo, S. J., Tirode, F., Coin, F., Pospiech, H., Syvaoja, J. E., Stucki, M., Hubscher, U., Egly, J.-M., and Wood, R. D. (2000) Genes Dev., 14, 349–359.PubMedGoogle Scholar
  24. 24.
    Ogi, T., and Lehmann, A. R. (2006) Nat. Cell Biol., 8, 640–642.CrossRefPubMedGoogle Scholar
  25. 25.
    Ogi, T., Limsirichaikul, S., Overmeer, R. M., Volker, M., Takenaka, K., Cloney, R., Nakazawa, Y., Niimi, A., Miki, Y., Jaspers, N. G. J., Mullenders, L. H. F., Yamashita, S., Fousteri, M. I., and Lehmann, A. R. (2010) Mol. Cell, 37, 714–727.CrossRefPubMedGoogle Scholar
  26. 26.
    Moser, J., Kool, H., Giakzidis, I., Caldecott, K., Mullenders, L. H. F., and Fousteri, M. I. (2007) Mol. Cell, 27, 311–323.CrossRefPubMedGoogle Scholar
  27. 27.
    Shivji, M. K. K., Podust, V. N., Hubscher, U., and Wood, R. D. (1995) Biochemistry, 34, 5011–5017.CrossRefPubMedGoogle Scholar
  28. 28.
    Araki, M., Masutani, C., Takemura, M., Uchida, A., Sugasawa, K., Kondoh, J., Ohkuma, Y., and Hanaoka, F. (2001) J. Biol. Chem., 276, 18665–18672.CrossRefPubMedGoogle Scholar
  29. 29.
    Masutani, C., Sugasawa, K., Yanagisawa, J., Sonoyama, T., Ui, M., Enomoto, T., Takio, K., Tanaka, K., van der Spek, P. J., Bootsma, D., Hoeijmakers, J. H. J., and Hanaoka, F. (1994) EMBO J., 13, 1831–1843.PubMedGoogle Scholar
  30. 30.
    Shivji, M. K. K., Eker, A. P. M., and Wood, R. D. (1994) J. Biol. Chem., 269, 22749–22757.PubMedGoogle Scholar
  31. 31.
    Batty, D., Rapic’-Otrin, V., Levine, A. S., and Wood, R. D. (2000) J. Mol. Biol., 300, 275–290.CrossRefPubMedGoogle Scholar
  32. 32.
    Ng, J. M. Y., Vermeulen, W., van der Horst, G. T. J., Bergink, S., Sugasawa, K., Vrieling, H., and Hoeijmakers, J. H. J. (2003) Genes Dev., 17, 1630–1645.CrossRefPubMedGoogle Scholar
  33. 33.
    Okuda, Y., Nishi, R., Ng, J. M. Y., Vermeulen, W., van der Horst, G. T. J., Mori, T., Hoeijmakers, J. H. J., Hanaoka, F., and Sugasawa, K. (2004) DNA Repair (Amst.), 3, 1285–1295.CrossRefGoogle Scholar
  34. 34.
    Sugasawa, K., Masutani, C., Uchida, A., Maekawa, T., van der Spek, P. J., Bootsma, D., Hoeijmakers, J. H. J., and Hanaoka, F. (1996) Mol. Cell. Biol., 16, 4852–4861.PubMedGoogle Scholar
  35. 35.
    Masutani, C., Araki, M., Sugasawa, K., van der Spek, P. J., Yamada, A., Uchida, A., Maekawa, T., Bootsma, D., Hoeijmakers, J. H. J., and Hanaoka, F. (1997) Mol. Cell. Biol., 17, 6915–6923.PubMedGoogle Scholar
  36. 36.
    Sugasawa, K., Ng, J. M. Y., Masutani, C., Maekawa, T., Uchida, A., van der Spek, P. J., Eker, A. P. M., Rademakers, S., Visser, C., Aboussekhra, A., Wood, R. D., Hanaoka, F., Bootsma, D., and Hoeijmakers, J. H. J. (1997) Mol. Cell. Biol., 17, 6924–6931.PubMedGoogle Scholar
  37. 37.
    Bunick, C. G., Miller, M. R., Fuller, B. E., Fanning, E., and Chazin, W. J. (2006) Biochemistry, 45, 14965–14979.CrossRefPubMedGoogle Scholar
  38. 38.
    Nishi, R., Okuda, Y., Watanabe, E., Mori, T., Iwai, S., Masutani, C., Sugasawa, K., and Hanaoka, F. (2005) Mol. Cell. Biol., 25, 5664–5674.CrossRefPubMedGoogle Scholar
  39. 39.
    Popescu, A., Miron, S., Blouquit, Y., Duchambon, P., Christova, P., and Craescu, C. T. (2003) J. Biol. Chem., 278, 40252–40261.CrossRefPubMedGoogle Scholar
  40. 40.
    Janicijevic, A., Sugasawa, K., Shimizu, Y., Hanaoka, F., Wijgers, N., Djurica, M., Hoeijmakers, J. H. J., and Wyman, C. (2003) DNA Repair (Amst.), 2, 325–336.CrossRefGoogle Scholar
  41. 41.
    Sugasawa, K., Okamoto, T., Shimizu, Y., Masutani, C., Iwai, S., and Hanaoka, F. (2001) Genes Dev., 15, 507–521.CrossRefPubMedGoogle Scholar
  42. 42.
    Sugasawa, K., Shimizu, Y., Iwai, S., and Hanaoka, F. (2002) DNA Repair (Amst.), 1, 95–107.CrossRefGoogle Scholar
  43. 43.
    Min, J.-H., and Pavletich, N. P. (2007) Nature, 449, 570–575.CrossRefPubMedGoogle Scholar
  44. 44.
    Legerski, R., and Peterson, C. (1992) Nature, 359, 70–73.CrossRefPubMedGoogle Scholar
  45. 45.
    McAteer, K., Jing, Y., Kao, J., Taylor, J.-S., and Kennedy, M. A. (1998) J. Mol. Biol., 282, 1013–1032.CrossRefPubMedGoogle Scholar
  46. 46.
    Kusumoto, R., Masutani, C., Sugasawa, K., Iwai, S., Araki, M., Uchida, A., Mizukoshi, T., and Hanaoka, F. (2001) Mutat. Res., 485, 219–227.PubMedGoogle Scholar
  47. 47.
    Chu, G., and Chang, E. (1988) Science, 242, 564–567.CrossRefPubMedGoogle Scholar
  48. 48.
    Keeney, S., Chang, G. J., and Linn, S. (1993) J. Biol. Chem., 268, 21293–21300.PubMedGoogle Scholar
  49. 49.
    Fujiwara, Y., Masutani, C., Mizukoshi, T., Kondo, J., Hanaoka, F., and Iwai, S. (1999) J. Biol. Chem., 274, 20027–20033.CrossRefPubMedGoogle Scholar
  50. 50.
    Payne, A., and Chu, G. (1994) Mutat. Res., 310, 89–102.PubMedGoogle Scholar
  51. 51.
    Reardon, J. T., Nichols, A. F., Keeney, S., Smith, C. A., Taylor, J. S., Linn, S., and Sancar, A. (1993) J. Biol. Chem., 268, 21301–21308.PubMedGoogle Scholar
  52. 52.
    Sugasawa, K., Okuda, Y., Saijo, M., Nishi, R., Matsuda, N., Chu, G., Mori, T., Iwai, S., Tanaka, K., Tanaka, K., and Hanaoka, F. (2005) Cell, 121, 387–400.CrossRefPubMedGoogle Scholar
  53. 53.
    Wittschieben, B. O., Iwai, S., and Wood, R. D. (2005) J. Biol. Chem., 280, 39982–39989.CrossRefPubMedGoogle Scholar
  54. 54.
    Scrima, A., Konickova, R., Czyzewski, B. K., Kawasaki, Y., Jeffrey, P. D., Groisman, R., Nakatani, Y., Iwai, S., Pavletich, N. P., and Thoma, N. H. (2008) Cell, 135, 1213–1223.CrossRefPubMedGoogle Scholar
  55. 55.
    Itoh, T., Linn, S., Ono, T., and Yamaizumi, M. (2000) J. Invest. Dermatol., 114, 1022–1029.CrossRefPubMedGoogle Scholar
  56. 56.
    Nichols, A. F., Ong, P., and Linn, S. (1996) J. Biol. Chem., 271, 24317–24320.CrossRefPubMedGoogle Scholar
  57. 57.
    Rapic-Otrin, V., Navazza, V., Nardo, T., Botta, E., McLenigan, M., Bisi, D. C., Levine, A. S., and Stefanini, M. (2003) Hum. Mol. Genet., 12, 1507–1522.CrossRefPubMedGoogle Scholar
  58. 58.
    Keeney, S., Eker, A. P. M., Brody, T., Vermeulen, W., Bootsma, D., Hoeijmakers, J. H. J., and Linn, S. (1994) Proc. Natl. Acad. Sci. USA, 91, 4053–4056.CrossRefPubMedGoogle Scholar
  59. 59.
    Rapic Otrin, V., Kuraoka, I., Nardo, T., McLenigan, M., Eker, A. P., Stefanini, M., Levine, A. S., and Wood, R. D. (1998) Mol. Cell. Biol., 18, 3182–3190.PubMedGoogle Scholar
  60. 60.
    Wakasugi, M., Shimizu, M., Morioka, H., Linn, S., Nikaido, O., and Matsunaga, T. (2001) J. Biol. Chem., 276, 15434–15440.CrossRefPubMedGoogle Scholar
  61. 61.
    Wakasugi, M., Kawashima, A., Morioka, H., Linn, S., Sancar, A., Mori, T., Nikaido, O., and Matsunaga, T. (2002) J. Biol. Chem., 277, 1637–1640.CrossRefPubMedGoogle Scholar
  62. 62.
    Wakasugi, M., Kasashima, H., Fukase, Y., Imura, M., Imai, R., Yamada, S., Cleaver, J. E., and Matsunaga, T. (2009) Nucleic Acids Res., 37, 516–525.CrossRefPubMedGoogle Scholar
  63. 63.
    Nishi, R., Alekseev, S., Dinant, C., Hoogstraten, D., Houtsmuller, A. B., Hoeijmakers, J. H. J., Vermeulen, W., Hanaoka, F., and Sugasawa, K. (2009) DNA Repair (Amst.), 8, 767–776.CrossRefGoogle Scholar
  64. 64.
    Groisman, R., Polanowska, J., Kuraoka, I., Sawada, J., Saijo, M., Drapkin, R., Kisselev, A. F., Tanaka, K., and Nakatani, Y. (2003) Cell, 113, 357–367.CrossRefPubMedGoogle Scholar
  65. 65.
    Lee, J., and Zhou, P. (2007) Mol. Cell, 26, 775–780.CrossRefPubMedGoogle Scholar
  66. 66.
    Chen, X., Zhang, J., Lee, J., Lin, P. S., Ford, J. M., Zheng, N., and Zhou, P. (2006) Mol. Cell, 22, 489–499.CrossRefPubMedGoogle Scholar
  67. 67.
    Fitch, M. E., Cross, I. V., Turner, S. J., Adimoolam, S., Lin, C. X., Williams, K. G., and Ford, J. M. (2003) DNA Repair (Amst.), 2, 819–826.CrossRefGoogle Scholar
  68. 68.
    Rapic’-Otrin, V., McLenigan, M. P., Bisi, D. C., Gonzalez, M., and Levine, A. S. (2002) Nucleic Acids Res., 30, 2588–2598.CrossRefGoogle Scholar
  69. 69.
    Kapetanaki, M. G., Guerrero-Santoro, J., Bisi, D. C., Hsieh, C. L., Rapic-Otrin, V., and Levine, A. S. (2006) Proc. Natl. Acad. Sci. USA, 103, 2588–2593.CrossRefPubMedGoogle Scholar
  70. 70.
    Wang, H., Zhai, L., Xu, J., Joo, H. Y., Jackson, S., Erdjument-Bromage, H., Tempst, P., Xiong, Y., and Zhang, Y. (2006) Mol. Cell, 22, 383–394.CrossRefPubMedGoogle Scholar
  71. 71.
    Hara, R., Mo, J., and Sancar, A. (2000) Mol. Cell. Biol., 20, 9173–9181.CrossRefPubMedGoogle Scholar
  72. 72.
    Hara, R., and Sancar, A. (2002) Mol. Cell. Biol., 22, 6779–6787.CrossRefPubMedGoogle Scholar
  73. 73.
    Yasuda, T., Sugasawa, K., Shimizu, Y., Iwai, S., Shiomi, T., and Hanaoka, F. (2005) DNA Repair (Amst.), 4, 389–395.CrossRefGoogle Scholar
  74. 74.
    Datta, A., Bagchi, S., Nag, A., Shiyanov, P., Adami, G. R., Yoon, T., and Raychaudhuri, P. (2001) Mutat. Res., 486, 89–97.PubMedGoogle Scholar
  75. 75.
    Liu, L., Lee, S., Zhang, J., Peters, S. B., Hannah, J., Zhang, Y., Yin, Y., Koff, A., Ma, L., and Zhou, P. (2009) Mol. Cell, 34, 451–460.CrossRefPubMedGoogle Scholar
  76. 76.
    Higa, L. A., Mihaylov, I. S., Banks, D. P., Zheng, J., and Zhang, H. (2003) Nat. Cell Biol., 5, 1008–1015.CrossRefPubMedGoogle Scholar
  77. 77.
    Hu, J., McCall, C. M., Ohta, T., and Xiong, Y. (2004) Nat. Cell Biol., 6, 1003–1009.CrossRefPubMedGoogle Scholar
  78. 78.
    Abbas, T., Sivaprasad, U., Terai, K., Amador, V., Pagano, M., and Dutta, A. (2008) Genes Dev., 22, 2496–2506.CrossRefPubMedGoogle Scholar
  79. 79.
    Kim, Y., Starostina, N. G., and Kipreos, E. T. (2008) Genes Dev., 22, 2507–2519.CrossRefPubMedGoogle Scholar
  80. 80.
    Nishitani, H., Shiomi, Y., Iida, H., Michishita, M., Takami, T., and Tsurimoto, T. (2008) J. Biol. Chem., 283, 29045–29052.CrossRefPubMedGoogle Scholar
  81. 81.
    Hess, M. T., Schwitter, U., Petretta, M., Giese, B., and Naegeli, H. (1997) Proc. Natl. Acad. Sci. USA, 94, 6664–6669.CrossRefPubMedGoogle Scholar
  82. 82.
    Araujo, S. J., Nigg, E. A., and Wood, R. D. (2001) Mol. Cell. Biol., 21, 2281–2291.CrossRefPubMedGoogle Scholar
  83. 83.
    Li, R.-Y., Calsou, P., Jones, C. J., and Salles, B. (1998) J. Mol. Biol., 281, 211–218.CrossRefPubMedGoogle Scholar
  84. 84.
    Yokoi, M., Masutani, C., Maekawa, T., Sugasawa, K., Ohkuma, Y., and Hanaoka, F. (2000) J. Biol. Chem., 275, 9870–9875.CrossRefPubMedGoogle Scholar
  85. 85.
    Naegeli, H., Bardwell, L., and Friedberg, E. C. (1992) J. Biol. Chem., 267, 392–398.PubMedGoogle Scholar
  86. 86.
    Coin, F., Marinoni, J. C., Rodolfo, C., Fribourg, S., Pedrini, A. M., and Egly, J.-M. (1998) Nat. Genet., 20, 184–188.CrossRefPubMedGoogle Scholar
  87. 87.
    Sung, P., Bailly, V., Weber, C., Thompson, L. H., Prakash, L., and Prakash, S. (1993) Nature, 365, 852–855.CrossRefPubMedGoogle Scholar
  88. 88.
    Dip, R., Camenisch, U., and Naegeli, H. (2004) DNA Repair (Amst.), 3, 1409–1423.CrossRefGoogle Scholar
  89. 89.
    Wood, R. D. (1999) Biochimie, 81, 39–44.CrossRefPubMedGoogle Scholar
  90. 90.
    Sugasawa, K., Akagi, J., Nishi, R., Iwai, S., and Hanaoka, F. (2009) Mol. Cell, 36, 642–653.CrossRefPubMedGoogle Scholar
  91. 91.
    Matsunaga, T., Mu, D., Park, C. H., Reardon, J. T., and Sancar, A. (1995) J. Biol. Chem., 270, 20862–20869.CrossRefPubMedGoogle Scholar
  92. 92.
    Moggs, J. G., Yarema, K. J., Essigmann, J. M., and Wood, R. D. (1996) J. Biol. Chem., 271, 7177–7186.CrossRefPubMedGoogle Scholar
  93. 93.
    Svoboda, D. L., Taylor, J. S., Hearst, J. E., and Sancar, A. (1993) J. Biol. Chem., 268, 1931–1936.PubMedGoogle Scholar
  94. 94.
    Coin, F., Oksenych, V., and Egly, J.-M. (2007) Mol. Cell, 26, 245–256.CrossRefPubMedGoogle Scholar
  95. 95.
    Winkler, G. S., Araujo, S. J., Fiedler, U., Vermeulen, W., Coin, F., Egly, J.-M., Hoeijmakers, J. H. J., Wood, R. D., Timmers, H. T., and Weeda, G. (2000) J. Biol. Chem., 275, 4258–4266.CrossRefPubMedGoogle Scholar
  96. 96.
    Shimizu, Y., Iwai, S., Hanaoka, F., and Sugasawa, K. (2003) EMBO J., 22, 164–173.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Biosignal Research Center, Organization of Advanced Science and TechnologyKobe UniversityKobe, HyogoJapan

Personalised recommendations