Biochemistry (Moscow)

, Volume 75, Issue 13, pp 1628–1649 | Cite as

Multiparametric determination of genes and their point mutations for identification of beta-lactamases

  • M. Yu. RubtsovaEmail author
  • M. M. Ulyashova
  • T. T. Bachmann
  • R. D. Schmid
  • A. M. Egorov


More than half of all currently used antibiotics belong to the beta-lactam group, but their clinical effectiveness is severely limited by antibiotic resistance of microorganisms that are the causative agents of infectious diseases. Several mechanisms for the resistance of Enterobacteriaceae have been established, but the main one is the enzymatic hydrolysis of the antibiotic by specific enzymes called beta-lactamases. Beta-lactamases represent a large group of genetically and function-ally different enzymes of which extended-spectrum beta-lactamases (ESBLs) pose the greatest threat. Due to the plasmid localization of the encoded genes, the distribution of these enzymes among the pathogens increases every year. Among ESBLs the most widespread and clinically relevant are class A ESBLs of TEM, SHV, and CTX-M types. TEM and SHV type ESBLs are derived from penicillinases TEM-1, TEM-2, and SHV-1 and are characterized by several single amino acid substitutions. The extended spectrum of substrate specificity for CTX-M beta-lactamases is also associated with the emergence of single mutations in the coding genes. The present review describes various molecular-biological methods used to identify determinants of antibiotic resistance. Particular attention is given to the method of hybridization analysis on microarrays, which allows simultaneous multiparametric determination of many genes and point mutations in them. A separate chapter deals with the use of hybridization analysis on microarrays for genotyping of the major clinically significant ESBLs. Specificity of mutation detection by means of hybridization analysis with different detection techniques is compared.

Key words

antibiotic resistance beta-lactamases gene determination single nucleotide polymorphism hybridization analysis microarrays 



base pair


deoxyribonucleoside triphosphates


extended spectrum β-lactamase


horseradish peroxidase


penicillin binding proteins


polymerase chain reaction


restriction fragment length polymorphism


real time PCR


single nucleotide polymorphism


single strand conformation polymorphism


melting temperature


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Livermore, D. M. (1995) Clin. Microbiol. Rev., 8, 557–584.PubMedGoogle Scholar
  2. 2.
    Pitout, J. D., and Laupland, K. B. (2008) Lancet Infect. Dis., 8, 159–166.PubMedCrossRefGoogle Scholar
  3. 3.
    Perez, F., Endimiani, A., Hujer, K. M., and Bonomo, R. A. (2000) Curr. Opin Pharmacol., 7, 459–469.CrossRefGoogle Scholar
  4. 4.
    Schwaber, M. J., and Carmeli, Y. (2007) J. Antimicrob. Chemother., 60, 913–9205.PubMedCrossRefGoogle Scholar
  5. 5.
    Schwaber, M. J., Navon-Venezia, S., Kaye, K. S., Ben Ami, R., Schwartz, D., and Carmeli, Y. (2006) Antimicrob. Agents Chemother., 50, 1257–1262.PubMedCrossRefGoogle Scholar
  6. 6.
    Bradford, P. (2001) Clin. Microbiol. Rev., 14, 933–951.PubMedCrossRefGoogle Scholar
  7. 7.
    Babic, M., Hujer, A. M., and Bonomo, R. A. (2006) Drug Resistance Updates, 9, 142–156.PubMedCrossRefGoogle Scholar
  8. 8.
    Paterson, D. L., and Bonomo, R. A. (2005) Clin. Microbiol. Rev., 18, 657–686.PubMedCrossRefGoogle Scholar
  9. 9.
    Sidorenko, S. V., and Tishkov, V. I. (2004) Uspekhi Biol. Khim., 44, 263–306.Google Scholar
  10. 10.
    Page, M. I. (1987) Advan. Phys. Org. Chem., 23, 165–170.CrossRefGoogle Scholar
  11. 11.
    Massova, I., and Mobashery, S. (1998) Antimicrob. Agents Chemother., 48, 1–17.Google Scholar
  12. 12.
    Nukaga, M., Haruta, S., Tanimoto, K., Kogure, K., Taniguchi, K., Tamaki, M., and Sawai, T. (1995) J. Biol. Chem., 270, 5729–5735.PubMedCrossRefGoogle Scholar
  13. 13.
    Ghuysen, J. M. (1994) Trends Microbiol., 2, 372–380.PubMedCrossRefGoogle Scholar
  14. 14.
    James, P. A., and Reeves, D. S. (1996) J. Chemother., 8,Suppl. 2, 37–47.PubMedGoogle Scholar
  15. 15.
    Chambers, H. F. (1997) Clin. Microbiol. Rev. J., 10, 781–791.Google Scholar
  16. 16.
    Heritier, C., Poirel, L., Lambert, T., and Nordmann, P. (2005) Antimicrob. Agents Chemother., 49, 3198–3202.PubMedCrossRefGoogle Scholar
  17. 17.
    Heritier, C., Poirel, L., Fournier, P. E., Claverie, J. M., Rauolt, D., and Nordmann, P. (2005) Antimicrob. Agents Chemother., 49, 4174–4179.PubMedCrossRefGoogle Scholar
  18. 18.
    Livermore, D. M., and Pearson, A. (2007) Clin. Microbiol. Infect., 13,Suppl. 2, 7–16.PubMedCrossRefGoogle Scholar
  19. 19.
    Harada, S., Yoshikazu, I., and Keizo, Y. (2008) Korean J. Lab. Med., 28, 401–412.PubMedCrossRefGoogle Scholar
  20. 20.
    Woodford, N., and Ellington, M. J. (2007) Clin. Microbiol. Infect., 13, 5–18.PubMedCrossRefGoogle Scholar
  21. 21.
    Medeiros, A. A. (1997) Clin. Infect. Dis., 24,Suppl. 1, S19–S45.PubMedGoogle Scholar
  22. 22.
    Poirel, L., Naas, T., and Nordmann, P. (2008) Clin. Microbiol. Infect., 14, 75–81.PubMedCrossRefGoogle Scholar
  23. 23.
    Weldhagen, G. F. (2004) Int. J. Antimicrob. Agents, 23, 556–562.PubMedCrossRefGoogle Scholar
  24. 24.
    Fleming, P. C., Goldner, M., and Glass, D. G. (1963) Lancet, 1, 1399–1401.PubMedCrossRefGoogle Scholar
  25. 25.
    Richmond, M. H., and Sykes, R. B. (1973) Adv. Microb. Physiol., 9, 31–38.PubMedCrossRefGoogle Scholar
  26. 26.
    Sykes, R. B., and Matthew, M. (1976) J. Antimicrob. Chemother., 2, 115–157.PubMedCrossRefGoogle Scholar
  27. 27.
    Bush, K., Jacoby, G. A., and Medeiros, A. A. (1995) Antimicrob. Agents Chemother., 39, 1211–1233.PubMedGoogle Scholar
  28. 28.
    Ambler, R. P. (1980) Philos. Trans. R. Soc. Lond. B. Biol. Sci., 289, 321–331.PubMedCrossRefGoogle Scholar
  29. 29.
    Bush, K. (2001) Clin. Infect. Des., 32, 1085–1089.CrossRefGoogle Scholar
  30. 30.
    Philippon, A., Arlet, G., and Jacoby, G. A. (2002) Antimicrob. Agents Chemother., 46, 1–11.PubMedCrossRefGoogle Scholar
  31. 31.
    Maltezou, H. C. (2009) Int. J. Antimicrob. Agents, 33, e1–e7.PubMedCrossRefGoogle Scholar
  32. 32.
    Tamilselvi, A., and Govindasamy, M. (2008) J. Biol. Inorg. Chem., 13, 1039–1053.PubMedCrossRefGoogle Scholar
  33. 33.
    Pitout, J. D., and Laupland, K. B. (2008) Lancet Infect. Dis., 8, 159–166.PubMedCrossRefGoogle Scholar
  34. 34.
    Livermore, D. M. (2008) Clin. Microbiol. Infect., 14,Suppl. 1, 3–10.PubMedCrossRefGoogle Scholar
  35. 35.
    Empel, J., Baraniak, A., Literacka, E., Mrowka, A., Fiett, J., Sadowy, E., et al. (2008) Antimicrob. Agents Chemother., 52, 2449–2454.PubMedCrossRefGoogle Scholar
  36. 36.
    Rodriguez-Bano, J., Navarro, M. D., Romero, L., Martinez-Martinez, L., Muniain, M. A., Perea, E. J., Perez-Cano, R., and Pascual, A. (2004) J. Clin. Microb., 42, 1089–1094.CrossRefGoogle Scholar
  37. 37.
    Paterson, D. L., Hujer, K. M., Hujer, A. M., Yeiser, B., Bonomo, M. D., Rice, L. B., et al. (2003) Antimicrob. Agents Chemother., 47, 3554–3560.PubMedCrossRefGoogle Scholar
  38. 38.
    Bush, K. (2008) Clin. Microbiol. Infect., 14,Suppl. 1, 134–143.PubMedCrossRefGoogle Scholar
  39. 39.
    Quinteros, M., Radice, M., Gardella, N., Rodriguez, M. M., Costa, N., Korbenfeld, Couto, D., and Gutkind, G. (2003) Antimicrob. Agents Chemother., 47, 2864–2867.PubMedCrossRefGoogle Scholar
  40. 40.
    Mulvey, M. R., Bryce, E., Boyd, D., Ofner-Agostini, M., Christianson, S., Simor, A. E., and Paton, Sh. (2004) Antimicrob. Agents Chemother., 48, 1204–1214.PubMedCrossRefGoogle Scholar
  41. 41.
    Hawkey, P. M. (2008) Clin. Microbiol. Infect., 14,Suppl. 1, 159–165.PubMedCrossRefGoogle Scholar
  42. 42.
    Wu, T. L., Chia, J. H., Su, L. H., Kuo, A. J., Chu, C., and Chiu, C. H. (2003) J. Clin. Microbiol., 41, 4836–4838.PubMedCrossRefGoogle Scholar
  43. 43.
    Schlesinger, J., Navon-Venezia, S., Chmelnitsky, I., Hammer-Munz, O., Leavitt, A., and Gold, H. S. (2005) Antimicrob. Agents Chemother., 49, 1150–1156.PubMedCrossRefGoogle Scholar
  44. 44.
    Livermore, D. M., Canton, R., Gniadkowski, M., Nordmann, P., Rossolini, G. M., Arlet, G., Ayala, J., Coque, T. M., Kern-Zdanowicz, I., Luzzaro, F., Poirel, L., and Woodford, N. (2007) J. Antimicrob. Chemother., 59, 165–174.PubMedCrossRefGoogle Scholar
  45. 45.
    Livermore, D. M., and Hawkey, P. M. (2005) J. Antimicrob. Chemother., 56, 451–454.PubMedCrossRefGoogle Scholar
  46. 46.
    Lartigue, M. F., Zinsius, C., Wenger, A., Bille, J., Poirel, L., and Nordmann, P. (2007) Antimicrob. Agents Chemother., 51, 2855–2860.PubMedCrossRefGoogle Scholar
  47. 47.
    Mugnaioli, C., Luzzaro, F., de Luca, F., Brigante, G., Perilli, M., Amicosante, G., Stefani, S., Toniolo, A., and Rossolini, G. M. (2006) Antimicrob. Agents Chemother., 50, 2700–2706.PubMedCrossRefGoogle Scholar
  48. 48.
    Pagani, L., Dell’Amico, E., Migliavacca, R., D’Andrea, M. M., Giacobone, E., Amicosante, G., Romero, E., and Rossolini, G. M. (2003) J. Clin. Microbiol., 41, 4264–4269.PubMedCrossRefGoogle Scholar
  49. 49.
    Wang, H., Kelkar, S., Wu, W., Chen, M., and Quinn, J. P. (2003) Antimicrob. Agents Chemother., 47, 790–793.PubMedCrossRefGoogle Scholar
  50. 50.
    Canton, R., and Coque, T. M. (2006) Curr. Opin. Microbiol., 9, 466–475.PubMedCrossRefGoogle Scholar
  51. 51.
    Jones, J. L., Muccioli, C., Belfort, R., Holland, G. N., Roberts, J. M., and Silveira, C. (2007) Emerging Infect. Dis., 13, 513–514.CrossRefGoogle Scholar
  52. 52.
    Mudrak, D. E., Ikryannikova, L. N., Sidorenko, S. V., and Il’ina, E. N. (2007) Antibiot. Khimioter., 52, 10–16.PubMedGoogle Scholar
  53. 53.
    Egorova, S., Kaftyreva, L., Grimont, P. A., and Weill, F. X. (2007) Microb. Drug Resist., 13, 102–107.PubMedCrossRefGoogle Scholar
  54. 54.
    Ivanov, D. V., and Egorov, A. M. (2008) Biomed. Khim., 54, 104–113.PubMedGoogle Scholar
  55. 55.
    Sidorenko, S. V., Berezin, A. G., and Ivanov, D. V. (2004) Antibiot. Khimioter., 49, 6–15.PubMedGoogle Scholar
  56. 56.
    Edelstein, M., Pimkin, M., Palagin, I., Edelstein, I., and Stratchounski, L. (2003) Antimicrob. Agents Chemother., 47, 3724–3732.PubMedCrossRefGoogle Scholar
  57. 57.
    Datta, N., and Kontomichalou, P. (1965) Nature, 208, 239–241.PubMedCrossRefGoogle Scholar
  58. 58.
    Du Bois, S. K., Marriott, M. S., and Amyes, S. G. (1995) J. Antimicrob. Chemother., 35, 7–22.PubMedCrossRefGoogle Scholar
  59. 59.
    Mabilat, C., Lourencao-Vital, J., Goussard, S., and Courvalin, P. (1992) Mol. Gen. Genet., 235, 113–121.PubMedCrossRefGoogle Scholar
  60. 60.
    Chaibi, E. B., Sirot, D., Paul, G., and Labia, R. (1999) J. Antimicrob. Chemother., 43, 447–458.PubMedCrossRefGoogle Scholar
  61. 61.
    Strynadka, N. C., Adachi, H., Jensen, S. E., Johns, K., Sielecki, A., Betzel, C., Suton, K., and James, M. N. (1992) Nature, 359, 700–705.PubMedCrossRefGoogle Scholar
  62. 62.
    Petrosino, J. F., and Palzkill, T. (1996) J. Bacteriol., 178, 1821–1828.PubMedGoogle Scholar
  63. 63.
    Hayes, F., Hallet, B., and Cao, Y. (1997) J. Biol. Chem., 272, 28833–28836.PubMedCrossRefGoogle Scholar
  64. 64.
    Knothe H., Shah, P., Kremery, V., Antal, M., and Mitsuhasi, S. (1983) Infection, 11, 315–317.PubMedCrossRefGoogle Scholar
  65. 65.
    Bauernfield, A., Grimm, H., and Shweighart, S. (1990) Infection, 18, 294–298.CrossRefGoogle Scholar
  66. 66.
    Bonnet, R. (2004) Antimicrob. Agents Chemother., 48, 1–14.PubMedCrossRefGoogle Scholar
  67. 67.
    Tzouvelekis, L. S., Tzelepi, E., Tassios, P. T., and Legakis, N. J. (2000) Int. J. Antimicrob. Agents, 14, 137–143.PubMedCrossRefGoogle Scholar
  68. 68.
    Bonnet, R., Champs, C. D., Sirot, D., Chanal, C., Labia, R., and Sirot, J. (1999) Antimicrob. Agents Chemother., 43, 2671–2677.PubMedGoogle Scholar
  69. 69.
    Steward, C. D., Rasheed, J. K., Hubert, S. K., Biddle, J. W., Raney, P. M., Anderson, G. J., Williams, P. P., Brittain, K. L., Oliver, A., McGowan, J. E., Jr., and Tenover, F. C. (2001) J. Clin. Microbiol., 39, 2864–2872.PubMedCrossRefGoogle Scholar
  70. 70.
    Weigand, I., Geiss, H. K., Mack, D., Sturenburg, E., and Seifert, H. (2007) J. Clin. Microbiol., 45, 1167–1174.CrossRefGoogle Scholar
  71. 71.
    Robberts, F. J. L., Kohner, P. C., and Patel, R. (2009) J. Clin. Microbiol., 47, 358–361.PubMedCrossRefGoogle Scholar
  72. 72.
    Drieux, L., Brossier, F., Sougakoff, W., and Jarlier, V. (2008) Clin. Microbiol. Infect., 14, 90–103.PubMedCrossRefGoogle Scholar
  73. 73.
    Wiegand, I., Geiss, H. K., Mack, D., Sturenburg, E., and Seifert, H. (2007) J. Clin. Microbiol., 45, 1167–1174.PubMedCrossRefGoogle Scholar
  74. 74.
    Paterson, D. L. (2008) Curr. Opin Infect. Dis., 14, 697–701.Google Scholar
  75. 75.
    Brookes, A. J. (1999) Gene, 234, 177–186.PubMedCrossRefGoogle Scholar
  76. 76.
    Monstein, H. J., Ostholm-Balkhed, A., Nilsson, M. V., Nilsson, M., Dornbusch, K., and Nilsson, L. E. (2007) APMIS, 115, 1400–1408.PubMedCrossRefGoogle Scholar
  77. 77.
    Woodford, N., Fagan, E. J., and Ellington, M. J. (2006) J. Antimicrob. Chemother., 57, 154–155.PubMedCrossRefGoogle Scholar
  78. 78.
    Xu, L., Ensor, V., Gossain, S., Nye, K., and Hawkey, P. (2005) J. Med. Microbiol., 54, 1183–1187.PubMedCrossRefGoogle Scholar
  79. 79.
    Pitout, J. D. D., Hamilton, N., Church, D. L., Nordmann, P., and Poirel, L. (2007) Clin. Microbiol. Infect., 13, 291–297.PubMedCrossRefGoogle Scholar
  80. 80.
    Birkett, C. I., Ludlam, H. A., Woodford, N., Brown, D. F. G., Brown, N. M., Roberts, M. T. M., Milner, N., and Curran, M. D. (2007) J. Med. Microbiol., 56, 52–55.PubMedCrossRefGoogle Scholar
  81. 81.
    Szabo, D., Melan, M. A., Hujer, A. M., Bonomo, R. A., Hujer, K. M., Bethel, C. R., Kristof, K., and Paterson, D. L. (2005) Antimicrob. Agents Chemother., 49, 4716–4720.PubMedCrossRefGoogle Scholar
  82. 82.
    Randegger, C. C., and Hachler, H. (2001) Antimicrob. Agents Chemother., 45, 1730–1736.PubMedCrossRefGoogle Scholar
  83. 83.
    Nikulin, A., Alexeev, Y., and Edelstein, M. (2007) Int. J. Antimicrob. Agents, 29,Suppl. 2, S222.CrossRefGoogle Scholar
  84. 84.
    Stepanova, M., Nikulin, A., Sukhorukova, M., and Edelstein, M. (2007) Abstr. 17th Europ. Congr. Clin. Microbiol. Infect. Dis./25th Int. Congr. Chemother., March 31–April 3, 2007, Munich, Germany, 1732–130.Google Scholar
  85. 85.
    Schumm, J. W., Knowlton, R. G., Braman, J. C., Barker, D. F., Botstein, D., Akots, G., Brown, V. A., Gravius, T. C., Helms, C., and Hsiao, K. (1989) Am. J. Hum. Genet., 42, 143–159.Google Scholar
  86. 86.
    Kalai Blagui, S., Achour, W., Abdeladhim, A., and Ben Hassen, A. (2009) Pathol. Biol., 57, 420–424.PubMedCrossRefGoogle Scholar
  87. 87.
    M’Zali, F.-H., Gascoyne-Binzi, D. M., Heritage, J., and Hawkey, P. M. (1996) J. Antimicrob. Chemother., 37, 797–802.PubMedCrossRefGoogle Scholar
  88. 88.
    Alonso, R., Fernandez-Aranguiz, A., Colom, K., and Cisterna, R. (2002) J. Microbiol. Meth., 50, 85–90.CrossRefGoogle Scholar
  89. 89.
    Ikryannikova, L. N., Shitikov, E. A., Zhivankova, D. G., Il’ina, E. N., Edelstein, M. V., and Govorun, V. M. (2008) J. Microbiol. Meth., 75, 385–391.CrossRefGoogle Scholar
  90. 90.
    Xu, L., Evans, J., Ling, T., Nye, K., and Hawkey, P. (2007) Antimicrob. Agents Chemother., 51, 1446–1454.PubMedCrossRefGoogle Scholar
  91. 91.
    Naas, T., Oxacelay, C., and Nordmann, P. (2007) Antimicrob. Agents Chemother., 51, 223–230.PubMedCrossRefGoogle Scholar
  92. 92.
    Poirel, L., Naas, T., and Nordmann, P. (2006) J. Clin. Microbiol., 44, 3008–3011.PubMedCrossRefGoogle Scholar
  93. 93.
    Southern, E. M., Maskos, U., and Elder, J. K. (1992) Genomics, 13, 1008–1017.PubMedCrossRefGoogle Scholar
  94. 94.
    Doss, V. A., Parvathi, S., Raju, B. A., and Devi, N. A. (2004) Dis. Markers, 20, 317–323.PubMedGoogle Scholar
  95. 95.
    Rodriguez, I., Barownick, W., Helmuth, R., Mendoza, M. C., Rodicio, M. R., Schroeter, A., and Guerra, B. (2009) J. Antimicrob. Chemother., 64, 301–309.PubMedCrossRefGoogle Scholar
  96. 96.
    Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Science, 270, 467–470.PubMedCrossRefGoogle Scholar
  97. 97.
    Heller, M. J. (2002) Annu. Rev. Biomed., 4, 129–153.CrossRefGoogle Scholar
  98. 98.
    Guckenberger, M., Kurz, S., Aepinus, C., Theiss, S., Haller, S., Leimbach, T., Panzner, U., Weber, J., Paul, H., Unkmeir, A., Frosch, M., and Dietrich, G. (2002) Amer. Soc. Microbiol., 184, 2546–2551.Google Scholar
  99. 99.
    Chizhikov, V., Rasooly, A., Chumakov, K., and Levy, D. D. (2001) Appl. Environ. Microbiol., 67, 3258–3263.PubMedCrossRefGoogle Scholar
  100. 100.
    Cao, X., Wang, Y. F., Zhang, C. F., and Gao, W. J. (2006) Biosens. Bioelectron., 15, 393–398.CrossRefGoogle Scholar
  101. 101.
    Ozsoz, M. (2003) Anal. Chem., 75, 2181–2187.PubMedCrossRefGoogle Scholar
  102. 102.
    Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X. C., Stern, D., Winkler, J., Lockhart, D. J., Morris, M. S., and Fodor, S. P. (1996) Science, 274, 610–614.PubMedCrossRefGoogle Scholar
  103. 103.
    Shogo, M., Shigehiko, U., Suzuki, O., Urano, A., and Abe, S. (2005) Mar. Biotechnol., 6, 430–434.Google Scholar
  104. 104.
    Michikawa, Y., Fujimoto, K., Kinoshita, K., Kawai, S., Sugahara, K., Suga, T., Otsuka, Y., Fujiwara, K., Iwakawa, M., and Imai, T. (2006) Anal. Sci., 22, 1537–1545.PubMedCrossRefGoogle Scholar
  105. 105.
    Lee, Y., Lee, C. S., Kim, Y. J., Chun, S., Park, S., Kim, Y. S., and Han, B. D. (2002) Mol. Cells, 14, 192–197.PubMedGoogle Scholar
  106. 106.
    Chen, S., Zhao, S., McDermott, P. F., Schroeder, C. M., White, D. G., and Meng, J. (2005) Mol. Cell Probes, 19, 195–201.PubMedCrossRefGoogle Scholar
  107. 107.
    Cleven, B. E. E., Palka-Santini, M., Gielen, J., Meembor, S., Kronke, M., and Krut, O. (2006) J. Clin. Microbiol., 44, 2389–2397.PubMedCrossRefGoogle Scholar
  108. 108.
    Perreten, V., Vorlet-Fawer, L., Slickers, P., Ehricht, R., Kuhnert, P., and Frey, J. (2005) J. Clin. Microbiol., 43, 2291–2302.PubMedCrossRefGoogle Scholar
  109. 109.
    Batchelor, M., Hopkins, K. L., Liebana, E., Slickers, P., Ehricht, R., Mafura, M., Aarestrup, F., Mevius, D., Clifton-Hadley, F. A., Woodward, M. J., Davies, R. H., Threlfall, E. J., and Anjum, M. F. (2008) Int. J. Antimicrob. Agents, 31, 440–451.PubMedCrossRefGoogle Scholar
  110. 110.
    Cassone, M., Andrea, M. M. D., Ianelli, F., Oggioni, M. R., Rossolini, G. M., and Pozzi, G. (2006) Antimicrob. Agents Chemother., 50, 2038–2041.PubMedCrossRefGoogle Scholar
  111. 111.
    Yu, X., Susa, M., Knabbe, C., Schmid, R. D., and Bachmann, T. T. (2004) J. Clin. Microbiol., 42, 4083–4091.PubMedCrossRefGoogle Scholar
  112. 112.
    Zhu, L. X., Zhang, Z. W., Liang, D., Jiang, D., Wang, C., Du, N., Zhang, Q., Mitchelson, K., and Cheng, J. (2007) Antimicrob. Agents Chemother., 51, 3707–3713.PubMedCrossRefGoogle Scholar
  113. 113.
    Strommenger, B., Schmidt, C., Werner, G., Roessle-Lorch, B., Bachmann, T. T., and Witte, W. (2007) Mol. Cell Probes, 21, 161–170.PubMedCrossRefGoogle Scholar
  114. 114.
    Rubina, A. Yu., Pan’kov, S. V., Dementieva, E. I., Pen’kov, D. N., Butygin, A. V., Vasiliskov, V. A., Chudinov, A. V., Mikheikin, A. L., Mikhailovich, V. M., and Mirzabekov, A. D. (2004) Anal. Biochem., 325, 92–106.PubMedCrossRefGoogle Scholar
  115. 115.
    Gryadunov, D., Mikhailovich, V., Lapa, S., Roudinskii, N., Donnikov, M., Pan’kov, S., Markova, O., Kuz’min, A., Chernousova, L., Skotnikova, O., Moroz, A., Zasedatelev, A., and Mirzabekov, A. (2005) Clin. Microb. Infect., 11, 531–539.CrossRefGoogle Scholar
  116. 116.
    Shibata, N., Kurokawa, H., Doi, Y., Yagi, T., Yamane, K., Wachino, J., Suzuki, S., Kimura, K., Ishikawa, S., Kato, H., Ozawa, Y., Shibayama, K., Kai, K., Konda, T., and Arakawa, Y. (2006) Antimicrob. Agents Chemother., 50, 791–795.PubMedCrossRefGoogle Scholar
  117. 117.
    Pitout, J. D. D., Hossain, A., and Hanson, N. D. (2004) J. Clin. Microbiol., 42, 5715–5721.PubMedCrossRefGoogle Scholar
  118. 118.
    Schmitt, J., Jacobs, E., and Schmidt, H. (2007) J. Med. Microbiol., 56, 241–249.PubMedCrossRefGoogle Scholar
  119. 119.
    Ensor, V. M., Livermore, D. M., and Hawkey, P. M. (2007) J. Antimicrob. Chemother., 59, 387–395.PubMedCrossRefGoogle Scholar
  120. 120.
    Grimm, V., Ezaki, S., Susa, M., Knabbe, C., Schmid, R. D., and Bachmann, T. T. (2004) J. Clin. Microbiol., 42, 3766–3774.PubMedCrossRefGoogle Scholar
  121. 121.
    Hughes, T. R., Mao, M., Jones, A. R., Burchard, J., Marton, M. J., Shannon, K. W., Lefkowitz, S. M., Ziman, M., Schelter, J. M., Meyer, M. R., Kobayashi, S., Davis, C., Dai, H., He, Y. D., Stephaniants, S. B., Cavet, G., Walker, W. L., West, A., Coffey, E., Shoemaker, D. D., Stoughton, R., Blanchard, A. P., Friend, S. H., and Linsley, P. S. (2001) Nat. Biotechnol., 19, 342–347.PubMedCrossRefGoogle Scholar
  122. 122.
    Bodrossy, L. (2003) A Beginner’s Guide to Microarrays, Kluwer Academic Publishers, New York, pp. 43–92.Google Scholar
  123. 123.
    Rubtsova, M. Yu., Ulyashova, M. M., Ignatenko, O. V., Edelstein, M. V., Egorov, A. M., Schmid, R. D., and Bachmann, T. T. (2008) Abstr. 8th Int. Meet. Microb. Epidemiol. Markers, Zakopane, Poland, May 14–17, 109.Google Scholar
  124. 124.
    Ulyashova, M. M., Rubtsova, M. Yu., Bachmann, T. T., and Egorov, A. M. (2008) Bull. of Moscow State Univ., Ser. 2, Chemistry, 49, 96–101.Google Scholar
  125. 125.
    Leinberger, D. M., Grimm, V., Rubtsova, M., Weile, Y., Schroppe, K., Wichelhaus, T. A., Knabbe, C., Schmid, R. D., and Bachmann, T. T. (2010) J. Clin. Microbiol., 48, 460–471.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • M. Yu. Rubtsova
    • 1
    Email author
  • M. M. Ulyashova
    • 1
  • T. T. Bachmann
    • 2
  • R. D. Schmid
    • 2
  • A. M. Egorov
    • 1
  1. 1.Chemical FacultyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Technical BiochemistryUniversity of StuttgartStuttgartGermany

Personalised recommendations