Biochemistry (Moscow)

, Volume 75, Issue 12, pp 1491–1497 | Cite as

Dietary supplementation of old rats with hydrogenated peanut oil restores activities of mitochondrial respiratory complexes in skeletal muscles

  • G. E. BronnikovEmail author
  • T. P. Kulagina
  • A. V. Aripovsky


The effect of dietary supplementation of old rats (26–33 months) with hydrogenated peanut oil on the activity of mitochondrial enzymes in skeletal muscles has been studied. The activities of NADH-coenzyme Q1 oxidoreductase, cytochrome c oxidase, and citrate synthase were determined spectrophotometrically in muscle homogenates. The activities of respiratory complexes I and IV were shown to significantly decrease with the age compared to the activity of the same enzymes in young animals, while the activity of citrate synthase was virtually unchanged. The fatty acid composition of muscle homogenates of old rats differed from that of young animals by a reduced content of myristic, oleic, linoleic, and α-linolenic acids and enhanced content of dihomo-γ-linolenic, arachidonic, and docosahexaenoic acids. Per oral supple-mentation of the old rats with hydrogenated peanut oil completely restored the activity of complex IV and increased the activity of complex I to 80% of the value observed in muscles of young animals, reducing the content of stearic, dihomo-γ-linolenic, arachidonic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids relative to that in the groups of old and young rats. The content of oleic and linoleic acids increased relatively to that in the group of the old rats, as well as young animals. The possible mechanisms of the restoration of the activity of the respiratory enzymes under the administration of hydrogenated peanut oil are discussed.

Key words

mitochondrial respiratory chain oxidative stress aging fatty acid composition of lipids skeletal muscles vegetable oil 



4-hydroxy-2-nonenal, unsaturated aldehyde


reactive oxygen species


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Byrne, E. (2002) J. Clin. Neurosci., 9, 497–501.CrossRefPubMedGoogle Scholar
  2. 2.
    Nicholls, D. G. (2002) Int. J. Biochem. Cell Biol., 34, 1372–1381.CrossRefPubMedGoogle Scholar
  3. 3.
    Harman, D. (1956) J. Gerontol., 11, 298–300.PubMedGoogle Scholar
  4. 4.
    Lenaz, G. (2001) IUBMB Life, 52, 159–164.CrossRefPubMedGoogle Scholar
  5. 5.
    Skulachev, V. P. (1998) Biochim. Biophys. Acta, 1363, 100–124.CrossRefPubMedGoogle Scholar
  6. 6.
    Otani, H. (2004) Antioxid. Redox Signal., 6, 449–469.CrossRefPubMedGoogle Scholar
  7. 7.
    Pagliarini, D. J., and Dixon, J. E. (2006) Trends Biochem. Sci., 31, 26–34.CrossRefPubMedGoogle Scholar
  8. 8.
    Skulachev, V. P. (2005) IUBMB Life, 57, 305–310.CrossRefPubMedGoogle Scholar
  9. 9.
    Yamaoka, S., Urade, R., and Kito, M. (1990) J. Nutr., 120, 415–421.PubMedGoogle Scholar
  10. 10.
    Schonfeld, P., and Wojtczak, L. (2007) Biochim. Biophys. Acta, 1767, 1032–1040.CrossRefPubMedGoogle Scholar
  11. 11.
    Schonfeld, P., and Wojtczak, L. (2008) Free Radic. Biol. Med., 45, 231–241.CrossRefPubMedGoogle Scholar
  12. 12.
    Quiles, J. L., Martinez, E., Ibanez, S., Ochoa, J. J., Martin, Y., Lopez-Frias, M., Huertas, J. R., and Mataix, J. (2002) J. Bioenerg. Biomembr., 34, 517–524.CrossRefPubMedGoogle Scholar
  13. 13.
    Kjaer, M. A., Todorcevic, M., Torstensen, B. E., Vegusdal, A., and Ruyter, B. (2008) Lipids, 43, 813–827.CrossRefPubMedGoogle Scholar
  14. 14.
    Gerson, A., Brow, J. C. L., Thomas, R., Bernards, M. A., and Staples, J. F. (2008) J. Exp. Biol., 211, 2689–2699.CrossRefPubMedGoogle Scholar
  15. 15.
    Stark, K. D., Lim, S.-Y., and Salem, N., Jr. (2007) Lipids Health Disease, 6, 13.CrossRefGoogle Scholar
  16. 16.
    Bronnikov, G. E., Kulagina, T. P., and Aripovsky, A. V. (2009) Biol. Membr. (Moscow), 26, 387–393.Google Scholar
  17. 17.
    Darley-Usmar, V. M., Rickwood, D., and Wilson, M. T. (1986) Mitochondria: A Practical Approach, IRL Press Limited, London.Google Scholar
  18. 18.
    Estornell, E., Fato, R., Pallotti, F., and Lenaz, G. (1993) FEBS Lett., 332, 127–131.CrossRefPubMedGoogle Scholar
  19. 19.
    Wiedemann, F. R., Vielhaber, S., Schroder, R., Elger, C. E., and Kunz, W. S. (2000) Anal. Biochem., 279, 55–60.CrossRefPubMedGoogle Scholar
  20. 20.
    Maklashina, E. O., Sled’, V. D., and Vinogradov, A. D. (1994) Biochemistry (Moscow), 59, 707–713.Google Scholar
  21. 21.
    Knapp, D. R. (1979) Analytical Derivatization Reactions, Wiley Interscience, p. 166.Google Scholar
  22. 22.
    Kwong, L. K., and Sohal, R. S. (2000) Arch. Biochem. Biophys., 373, 16–22.CrossRefPubMedGoogle Scholar
  23. 23.
    Boffoli, D., Scacco, S. C., Vergari, R., Persio, M. T., Solarino, G., Laforgia, R., and Papa, S. (1996) Biochim. Biophys. Acta, 1315, 66–72.PubMedGoogle Scholar
  24. 24.
    Boffoli, D., Scacco, S. C., Vergari, R., Solarino, G., Santacroce, G., and Papa, S. (1994) Biochim. Biophys. Acta, 1226, 73–82.PubMedGoogle Scholar
  25. 25.
    Guerrieri, F., Capozza, G., Kalous, M., and Papa, S. (1992) Ann. NY Acad. Sci., 671, 395–402.CrossRefPubMedGoogle Scholar
  26. 26.
    Bronnikov, G. E., Rotaru, V. K., Agar, L., Lewandowski, P. A., and Linnane, A. W. (2000) in Advances in Gerontology, Vol. 5, p. 20, 2nd Europ. Congr. on Biogerontology “From Molecules to Humans” (August 25–28, St. Petersburg, Russia).Google Scholar
  27. 27.
    Wallace, D. C., Lott, M. T., Shoffner, J. M., and Ballinger, S. (1994) Epilepsia, 35,Suppl. 1, 43–50.CrossRefGoogle Scholar
  28. 28.
    Sipos, I., Tretter, L., and Adam-Vizi, V. J. (2003) Neurochemistry, 84, 112–118.Google Scholar
  29. 29.
    Chicco, A. J., and Sparagna, G. C. (2007) Am. J. Physiol. Cell Physiol., 292, 33–44.CrossRefGoogle Scholar
  30. 30.
    Musatov, A. (2006) Free Radic. Biol. Med., 41, 238–246.CrossRefPubMedGoogle Scholar
  31. 31.
    Shinzawa-Itoh, K., Aoyama, H., Muramoto, K., Terada, H., Kurauchi, T., Tadehara, Y., Yamasaki, A., Sugimura, T., Kurono, S., Tsujimoto, K., Mizushima, T., Yamashita, E., Tsukihara, T., and Yoshikawa, S. (2007) EMBO J., 26, 1713–1725.CrossRefPubMedGoogle Scholar
  32. 32.
    Qin, L., Sharpe, M. A., Garavito, R. M., and Ferguson-Miller, S. (2007) Curr. Opin. Struct. Biol., 17, 444–450.CrossRefPubMedGoogle Scholar
  33. 33.
    Qin, L., Mills, D. A., Buhrow, L., Hiser, C., and Ferguson-Miller, S. (2008) Biochemistry, 47, 9931–9933.CrossRefPubMedGoogle Scholar
  34. 34.
    Varanasi, L., Mills, D., Murphree, A., Gray, J., Purser, C., Baker, R., and Hosler, J. (2006) Biochemistry, 45, 14896–14907.CrossRefPubMedGoogle Scholar
  35. 35.
    Imre, S., Firbas, J. Y., and Noble, R. C. (2000) Arch. Gerontol. Geriatr., 31, 5–12.CrossRefPubMedGoogle Scholar
  36. 36.
    Ulmann, L., Blond, J. P., Maniongui, C., Poisson, J. P., Duran, G., Bezard, J., and Pascal, G. (1991) Lipids, 26, 127–133.CrossRefPubMedGoogle Scholar
  37. 37.
    Battino, N., Ferreiro, M. S., Littarru, G., Quiles, J. L., Ramirez-Tortoza, M. C., Huertas, J. R., Mataix, J., Villa, R. F., and Gorini, A. (2002) Free Radic. Res., 36, 479–484.CrossRefPubMedGoogle Scholar
  38. 38.
    Sevanian, A., and Hochstein, P. (1985) Annu. Rev. Nutr., 5, 365–390.CrossRefPubMedGoogle Scholar
  39. 39.
    Musatov, A., Carroll, C. A., Liu, Y.-C., Henderson, G. I., Weintraub, S. T., and Robinson, N. C. (2002) Biochemistry, 41, 8212–8220.CrossRefPubMedGoogle Scholar
  40. 40.
    Picklo, Sr. M. J., and Montine, N. J. (2007) J. Alzheimers Dis., 12, 185–193.PubMedGoogle Scholar
  41. 41.
    Lee, H. J., Mayette, J., Rapoport, S. I., and Bazinet, R. P. (2006) Lipids Health Dis., 5, 1–4.CrossRefGoogle Scholar
  42. 42.
    Lewin, E. J., and Timiras, P. S. (1984) Mech. Ageing Dev., 24, 343–251.CrossRefPubMedGoogle Scholar
  43. 43.
    Infante, J. P., Kirwan, R. C., and Brenna, J. P. (2001) Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 130, 291–298.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • G. E. Bronnikov
    • 1
    Email author
  • T. P. Kulagina
    • 1
  • A. V. Aripovsky
    • 2
  1. 1.Institute of Cell BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Scientific Center of Applied Microbiology and BiotechnologyObolensk, Moscow RegionRussia

Personalised recommendations