Biochemistry (Moscow)

, Volume 75, Issue 12, pp 1458–1463

Novel mutants of human tumor necrosis factor with dominant-negative properties

  • L. N. Shingarova
  • E. F. Boldyreva
  • S. A. Yakimov
  • S. V. Guryanova
  • D. A. Dolgikh
  • S. A. Nedospasov
  • M. P. Kirpichnikov


Tumor necrosis factor (TNF) is a polyfunctional cytokine, one of the key mediators of inflammation and innate immunity. On the other hand, systemic or local TNF overexpression is typical of such pathological states as rheumatoid arthritis, psoriasis, Crohn’s disease, septic shock, and multiple sclerosis. Neutralization of TNF activity has a marked curative effect for some diseases; therefore, the search for various TNF blockers is a promising field of protein engineering and biotechnology. According to the previously developed concept concerning the possibility of designing dominant-negative mutants, the following TNF variants have been studied: TNFY87H + A145R, TNFY87H + A96S + A145R, and TNFV91N + A145R. All of these form inactive TNF heterotrimers with the native protein. The ability of mutants to neutralize the effect of TNF was investigated. The addition of mutants to the native protein was shown to provide a concentration-dependent suppression of TNF cytotoxicity against the mouse fibroblast cell line L929. Thus, novel inhibitors of human TNF can be engineered on the basis of these muteins.

Key words

tumor necrosis factor (TNF) mutants TNF inhibitors 



dominant-negative TNF inhibitors


tumor necrosis factor


TNF receptors


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mathew, S. J., Haubert, D., Kronke, M., and Leptin, M. (2009) J. Cell Sci., 122, 1939–1946.CrossRefPubMedGoogle Scholar
  2. 2.
    Tansey, M. G., and Szymkowski, D. E. (2009) Drug Discov. Today, 23/24, 1082–1088.CrossRefGoogle Scholar
  3. 3.
    Eck, M. J., and Sprang, S. R. (1989) J. Biol. Chem., 264, 17595–17605.PubMedGoogle Scholar
  4. 4.
    Kollias, G., and Kontoyiannis, D. (2002) Cytokine Growth Factor Rev., 13, 315–321.CrossRefPubMedGoogle Scholar
  5. 5.
    Tartaglia, L. A., Weber, R. F., Figari, I. S., Reynolds, C., Palladino, M. A., Jr., and Goeddel, D. V. (1991) Proc. Natl. Acad. Sci. USA, 88, 9292–9296.CrossRefPubMedGoogle Scholar
  6. 6.
    Zalevsky, J., Secher, T., Ezhevsky, S., Janot, L., Steed, P., O’Brien, C., Eivazi, A., Kung, J., Nguyen, D-H., Doberstein, S., Erard, F., Ryffel, B., and Szymkowski, D. E. (2007) J. Immunol., 179, 1872–1883.PubMedGoogle Scholar
  7. 7.
    Efimov, G. A., Kruglov, A. A., Tillib, S. V., Kuprash, D. V., and Nedospasov, S. A. (2009) Mol. Immunol., 47, 19–27.CrossRefPubMedGoogle Scholar
  8. 8.
    Steed, P. M., Tansey, M. G., Zalevsky, J., Zhukovsky, E. A., Desjarlais, J. R., Szymkowski, D. E., Abbott, C., Carmichael, D., Chan, C., Cherry, L., et al. (2003) Science, 301, 1895–1898.CrossRefPubMedGoogle Scholar
  9. 9.
    Shingarova, L. N., Sagaydak, L. N., Turetskaya, R. L., Nedospasov, S. A., Esipov, D. S., and Korobko, V. G. (1996) Bioorg. Khim., 22, 243–251.PubMedGoogle Scholar
  10. 10.
    Sambrook, J., and Russell, D. (2001) Molecular Cloning: A Laboratory Manual, CSHL Press.Google Scholar
  11. 11.
    Laemmli, U. K. (1979) Nature, 227, 680–685.CrossRefGoogle Scholar
  12. 12.
    Kramer, S. M., and Carver, M. E. (1986) J. Immunol. Meth., 93, 201–206.CrossRefGoogle Scholar
  13. 13.
    Shibata, H., Yoshioka, Y., Ohkawa, A., Minowa, K., Mukai, Y., Tsutsumi, Y., et al. (2008) J. Biol. Chem., 283, 998–1007.CrossRefPubMedGoogle Scholar
  14. 14.
    Mukai, Y., Shibata, H., Nakamura, T., Yoshioka, Y., Abe, Y., Nomura, T., Taniai, M., Ohta, T., Ikemizu, S., Nakagawa, S., Tsunoda, S., Kamada, H., Yamagata, Y., and Tsutsumi, Y. (2009) J. Mol. Biol., 385, 1221–1229.CrossRefPubMedGoogle Scholar
  15. 15.
    Creasey, A. A., Doyle, L. V., Reynolds, M. T., Jung, T., Lin, L. S., and Vitt, C. R. (1987) Cancer Res., 47, 145–149.PubMedGoogle Scholar
  16. 16.
    Wang, H., Yan, Z., Shi, J., Han, W., and Zhang, Y. (2006) Protein Expr. Purif., 45, 60–65.CrossRefPubMedGoogle Scholar
  17. 17.
    Tumanov, A. V., Kruglov, A. A., Grivennikov, S. I., Shebzukhov, Y. V., Koroleva, E. P., Piao, Y., Cui, C.-Y., Kuprash, D. V., and Nedospasov, S. A. (2010) Blood, in press.Google Scholar
  18. 18.
    Kruglov, A. A., Kuchmiy, A., Grivennikov, S. I., Tumanov, A. V., Kuprash, D. V., and Nedospasov, S. A. (2008) Cytokine Growth Factor Rev., 19, 231–244.CrossRefPubMedGoogle Scholar
  19. 19.
    Quesniaux, V. F., Jacobs, M., Allie, N., Grivennikov, S., Nedospasov, S. A., Garcia, I., Olleros, M. L., Shebzukhov, Y., Kuprash, D., Vasseur, V., Rose, S., Court, N., Vacher, R., and Ryffel, B. (2010) Curr. Dir. Autoimmun., 11, 157–179.CrossRefPubMedGoogle Scholar
  20. 20.
    McAlpine, F. E., Lee, J. K., Harms, A. S., Ruhn, K. A., Blurton-Jones, M., Hong, J., Das, P., Gold, T. E., LaFerta, F. M., Oddo, S., Blesch, A., and Tansey, M. G. (2009) Neurobiol. Dis., 34, 163–177.CrossRefPubMedGoogle Scholar
  21. 21.
    Olleros, M. L., Vesin, D., Lambou, A. F., Janssens, J. P., Ryffel, B., Rose, S., Fremond, C., Quesniaux, V. F., Szymkowski, D. E., and Garcia, I. (2009) J. Infect. Dis., 199, 1053–1063.CrossRefPubMedGoogle Scholar
  22. 22.
    McCoy, M. K., Martinez, T. N., Ruhn, K. A., Szymkowski, D. E., Smith, C. G., Botterman, B. R., Tansey, K. E., and Tansey, M. G. (2006) J. Neurosci., 26, 9365–9375.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • L. N. Shingarova
    • 1
  • E. F. Boldyreva
    • 1
  • S. A. Yakimov
    • 1
  • S. V. Guryanova
    • 1
  • D. A. Dolgikh
    • 1
    • 2
  • S. A. Nedospasov
    • 2
    • 3
  • M. P. Kirpichnikov
    • 1
    • 2
  1. 1.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Biological FacultyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations