Biochemistry (Moscow)

, Volume 75, Issue 12, pp 1450–1457 | Cite as

Glycosylation of purified buffalo heart galectin-1 plays crucial role in maintaining its structural and functional integrity

  • G. M. Ashraf
  • N. Bilal
  • N. Suhail
  • S. Hasan
  • N. BanuEmail author


A buffalo heart galectin-1 purified by gel filtration chromatography revealed the presence of 3.55% carbohydrate content, thus it is the first mammalian heart galectin found to be glycosylated in nature and emphasizes the need to perform deglycosylation studies. Physicochemical comparative analysis between the properties of the native and deglycosylated proteins was carried out to understand the significance of glycosylation. The deglycosylated protein exhibited lesser thermal and pH stability compared to the native galectin. When exposed to thiol blocking reagents, denaturants, and detergents, remarkable differences were observed in the properties of the native and deglycosylated protein. Compared to the native glycosylated protein, the deglycosylated galectin showed enhanced fluorescence quenching when exposed to various agents. CD and FTIR analysis showed that deglycosylation of the purified galectin and its exposure to different chemicals resulted in significant deviations from regular secondary structure of the protein, thus emphasizing the significance of glycosylation for maintaining the active conformation of the protein. The remarkable differences observed in the properties of the native and deglycosylated galectin add an important dimension to the significance of protein glycosylation and its associated biological and clinical relevance.

Key words

buffalo heart galectin-1 (BfHG-1) glycosylation deglycosylation deglycosylated BfHG-1 (dBfHG-1) oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barondes, S. H., Cooper, D. N. W., Gitt, M. A., and Leffler, H. (1994) J. Biol. Chem., 269, 20807–20810.PubMedGoogle Scholar
  2. 2.
    Hasan, S. S., Ashraf, G. M., and Banu, N. (2007) Cancer Lett., 253, 25–33.CrossRefPubMedGoogle Scholar
  3. 3.
    Bardosi, A., Bardosi, L., Hendrys, M., Wosgien, B., and Gabius, H. J. (1990) Am. J. Anat., 188, 409–418.CrossRefPubMedGoogle Scholar
  4. 4.
    Giordanengo, L., Gea, S., Barbieri, G., and Rabinovich, G. A. (2001) Clin. Exp. Immunol., 124, 266–273.CrossRefPubMedGoogle Scholar
  5. 5.
    Case, D., Irwin, D., Ivester, C., Harral, J., Morris, K., Imamura, M., et al. (2007) Am. J. Physiol. Lung Cell. Mol. Physiol., 292, L154–L164.CrossRefPubMedGoogle Scholar
  6. 6.
    Chellan, B., Narayani, J., and Appukuttan, P. S. (2007) Exp. Mol. Path., 83, 399–404.CrossRefGoogle Scholar
  7. 7.
    Moiseeva, E. P., Williams, B., Goodall, A. H., and Samani, N. J. (2003) Biochem. Biophys. Res. Comm., 310, 1010–1016.CrossRefPubMedGoogle Scholar
  8. 8.
    Ashraf, G. M., Rizvi, S., Naqvi, S., Suhail, N., Bilal, N., Hasan, S., Tabish, M., and Banu, N. (2010) Amino Acids, 39, 1321–1332.CrossRefPubMedGoogle Scholar
  9. 9.
    Miarons, P. B., and Fresno, M. (2000) J. Biol. Chem., 275, 29283–29289.CrossRefPubMedGoogle Scholar
  10. 10.
    Lis, H., and Sharon, H. (1993) Eur. J. Biochem., 218, 1–27.CrossRefPubMedGoogle Scholar
  11. 11.
    Komatsu, S., Yamada, E., and Furukawa, K. (2009) Amino Acids, 36, 115–123.CrossRefPubMedGoogle Scholar
  12. 12.
    Hakomori, S. (2002) Proc. Natl. Acad. Sci. USA, 99, 10231–10233.CrossRefPubMedGoogle Scholar
  13. 13.
    Ideo, H., Seko, A., Ishizuka, I., and Yamashita, K. (2003) Glycobiology, 13, 713–723.CrossRefPubMedGoogle Scholar
  14. 14.
    Hadari, Y. R., Paz, K., Dekel, R., Mestrovic, T., Accili, D., and Zick, Y. (1995) J. Biol. Chem., 270, 3447–3453.CrossRefPubMedGoogle Scholar
  15. 15.
    Brewer, C. F. (1997) Trends. Glycosci. Glycotechnol., 9, 155–165.Google Scholar
  16. 16.
    Lis, H., Belenky, D., Rabinkov, A., and Sharon, N. (1994) Cell Biology: A Laboratory Handbook, Academic Press.Google Scholar
  17. 17.
    Laemmli, U. K. (1970) Nature, 227, 680–685.CrossRefPubMedGoogle Scholar
  18. 18.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1989) J. Biol. Chem., 193, 265–275.Google Scholar
  19. 19.
    Andrews, P. (1965) Biochem. J., 96, 595–606.PubMedGoogle Scholar
  20. 20.
    Weber, K., and Osborn, M. (1969) J. Biol. Chem., 244, 4406–4412.PubMedGoogle Scholar
  21. 21.
    Dubois, M., Gilles, K. A., and Hamilton, J. K. (1956) Anal. Chem., 28, 350–356.CrossRefGoogle Scholar
  22. 22.
    Rasheedi, S., Haq, S. K., and Khan, R. H. (2003) Biochemistry (Moscow), 68, 1097–1100.CrossRefGoogle Scholar
  23. 23.
    Hughes, R. C. (1999) Biochim. Biophys. Acta, 1473, 172–185.PubMedGoogle Scholar
  24. 24.
    Sinha, S., and Surolia, A. (2007) Biophys. J., 92, 208–216.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang, C., Eufemi, M., Turano, C., and Giartosio, A. (1996) Biochemistry, 35, 7299–7307.CrossRefPubMedGoogle Scholar
  26. 26.
    Arnold, U., and Ulbrich-Hofmann, R. (1997) Biochemistry, 36, 2166–2172.CrossRefPubMedGoogle Scholar
  27. 27.
    De Koster, G. T., and Robertson, A. D. (1997) Biochemistry, 36, 2323–2331.CrossRefGoogle Scholar
  28. 28.
    Fatima, A., and Hussain, Q. (2007) Int. J. Biol. Macro., 41, 56–63.CrossRefGoogle Scholar
  29. 29.
    Levi, G., and Teichberg, V. I. (1981) J. Biol. Chem., 256, 5735–5740.PubMedGoogle Scholar
  30. 30.
    Berkel, P. H. C. V., Geerts M. E. J., van Veen, H. A., Kooiman, P. M., Pieper, F. R., de Boer, H. A., and Nuijens, J. H. (1995) Biochem. J., 312, 107–114.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • G. M. Ashraf
    • 1
    • 2
  • N. Bilal
    • 1
  • N. Suhail
    • 1
  • S. Hasan
    • 1
  • N. Banu
    • 1
    Email author
  1. 1.Department of Biochemistry, Faculty of Life SciencesAligarh Muslim UniversityAligarhIndia
  2. 2.Amity Institute of BiotechnologyAmity University Uttar Pradesh (AUUP)Lucknow CampusIndia

Personalised recommendations