Biochemistry (Moscow)

, Volume 75, Issue 12, pp 1435–1443 | Cite as

Cloning and characterization of indolepyruvate decarboxylase from Methylobacterium extorquens AM1

  • D. N. Fedorov
  • N. V. Doronina
  • Yu. A. TrotsenkoEmail author


For the first time for methylotrophic bacteria an enzyme of phytohormone indole-3-acetic acid (IAA) biosynthesis, indole-3-pyruvate decarboxylase (EC, has been found. An open reading frame (ORF) was identified in the genome of facultative methylotroph Methylobacterium extorquens AM1 using BLAST. This ORF encodes thiamine diphosphate-dependent 2-keto acid decarboxylase and has similarity with indole-3-pyruvate decarboxylases, which are key enzymes of IAA biosynthesis. The ORF of the gene, named ipdC, was cloned into overexpression vector pET-22b(+). Recombinant enzyme IpdC was purified from Escherichia coli BL21(DE3) and characterized. The enzyme showed the highest k cat value for benzoylformate, albeit the indolepyruvate was decarboxylated with the highest catalytic efficiency (k cat/K m). The molecular mass of the holoenzyme determined using gel-permeation chromatography corresponds to a 245-kDa homotetramer. An ipdC-knockout mutant of M. extorquens grown in the presence of tryptophan had decreased IAA level (46% of wild type strain). Complementation of the mutation resulted in 6.3-fold increase of IAA concentration in the culture medium compared to that of the mutant strain. Thus involvement of IpdC in IAA biosynthesis in M. extorquens was shown.

Key words

Methylobacterium extorquens indole-3-pyruvate decarboxylase heterologous expression kinetic properties mutants 



indole-3-acetic acid






indole-3-lactic acid


indole-3-pyruvic acid


thiamine diphosphate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Trotsenko, Yu. A., Ivanova, E. G., and Doronina, N. V. (2001) Microbiology (Moscow), 70, 623–632.Google Scholar
  2. 2.
    Nemecek-Marshall, M., MacDonald, R. C., Franzen, J. J., Wojciechowski, C. L., and Fall, R. (1995) Plant Physiol., 108, 1359–1368.PubMedGoogle Scholar
  3. 3.
    Galbally, I. E., and Kirstine, W. J. (2002) Atmosph. Chem., 43, 195–229.CrossRefGoogle Scholar
  4. 4.
    Ivanova, E. G., Doronina, N. V., and Trotsenko, Y. A. (2001) Microbiology (Moscow), 70, 392–397.Google Scholar
  5. 5.
    Ivanova, E. G., Doronina, N. V., Shepelyakovskaya, A. O., Laman, A. G., Brovko, F. A., and Trotsenko, Yu. A. (2000) Microbiology (Moscow), 69, 646–651.Google Scholar
  6. 6.
    Sy, A., Giraud, E., Jourand, P., Garcia, N., Willems, A., de Lajudie, P., Prin, Y., Neyra, M., Gillis, M., Boivin-Masson, C., and Dreyfus, B. (2001) J. Bacteriol., 183, 214–220.CrossRefPubMedGoogle Scholar
  7. 7.
    Madhaiyan, M., Poonguzhali, S., Ryu, J., and Sa, T. (2006) Planta, 224, 268–278.CrossRefPubMedGoogle Scholar
  8. 8.
    Kalyaeva, M. A., Zakharchenko, N. S., Doronina, N. V., Rukavtsova, E. B., Ivanova, E. G., Alexeeva, V. V., Trotsenko, Yu. A., and Bur’yanov, Ya. I. (2001) Russ. J. Plant Physiol., 48, 514–517.CrossRefGoogle Scholar
  9. 9.
    Kalyaeva, M. A., Ivanova, E. G., Doronina, N. V., Zakharchenko, N. S., Trotsenko, Yu. A., and Buryanov, Ya. I. (2003) Russ. J. Plant Physiol., 50, 313–317.CrossRefGoogle Scholar
  10. 10.
    Vuilleumier, S., Chistoserdova, L., Lee, M.-C., Bringel, F., Lajus, A., Zhou, Y., Gourion, B., Barbe, V., Chang, J., Cruveiller, S., Dossat, C., Gillett, W., Gruffaz, C., Haugen, E., Hourcade, E., Levy, R., Mangenot, S., Muller, E., Nadalig, T., Pagni, M., Penny, C., Peyraud, R., Robinson, D. G., Roche, D., Rouy, Z., Saenampechek, C., Salvignol, G., Vallenet, D., Wu, Z., Marx, C. J., Vorholt, J. A., Olson, M. V., Kaul, R., Weissenbach, J., Medigue, C., and Lidstrom, M. E. (2009) PLoS ONE, 4, e5584; doi:10.1371/journal.pone.0005584.CrossRefPubMedGoogle Scholar
  11. 11.
    Spaepen, S., Vanderleyden, J., and Remans, R. (2007) FEMS Microbiol. Rev., 31, 425–448.CrossRefPubMedGoogle Scholar
  12. 12.
    Woodward, A. W., and Bartel, B. (2005) Ann. Bot., 95, 707–735.CrossRefPubMedGoogle Scholar
  13. 13.
    Koga, J. (1995) Biochim. Biophys. Acta, 1249, 1–13.PubMedGoogle Scholar
  14. 14.
    Schutz, A., Golbik, R., Tittmann, K., Svergun, D. I., Koch, M. H. J., Hubner, G., and Konig, S. (2003) Eur. J. Biochem., 270, 2322–2331.CrossRefPubMedGoogle Scholar
  15. 15.
    Spaepen, S., Versees, W., Gocke, D., Pohl, M., Steyaert, J., and Vanderleyden, J. (2007) J. Bacteriol., 189, 7626–7633.CrossRefPubMedGoogle Scholar
  16. 16.
    Gocke, D., Nguyen, C. L., Pohl, M., Stillger, T., Walter, L., and Müller, M. (2007) Adv. Synth. Catal., 349, 1425–1435.CrossRefGoogle Scholar
  17. 17.
    Werther, T., Spinka, M., Tittmann, K., Schutz, A., Golbik, R., Mrestani-Klaus, C., Hubner, G., and Konig, S. (2008) J. Biol. Chem., 283, 5344–5354.CrossRefPubMedGoogle Scholar
  18. 18.
    Polovnikova, E. S., McLeish, M. J., Sergienko, E. A., Burgner, J. T., Anderson, N. L., Bera, A. K., Jordan, F., Kenyon, G. L., and Hasson, M. S. (2003) Biochemistry, 42, 1820–1830.CrossRefPubMedGoogle Scholar
  19. 19.
    Saehuan, C., Rojanarata, T., Wiyakrutta, S., McLeish, M. J., and Meevootisom, V. (2007) Biochim. Biophys. Acta, 1770, 1585–1592.PubMedGoogle Scholar
  20. 20.
    Simon, R., Priefer, U., and Puhler, A. (1983) Bio/Technology, 1, 784–791.CrossRefGoogle Scholar
  21. 21.
    Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) Gene, 33, 103–119.CrossRefPubMedGoogle Scholar
  22. 22.
    Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G., and Puhler, A. (1994) Gene, 145, 69–73.CrossRefPubMedGoogle Scholar
  23. 23.
    Dennis, J. J., and Zylstra, G. J. (1998) Appl. Environ. Microbiol., 64, 2710–2715.PubMedGoogle Scholar
  24. 24.
    Yasukawa, T., Kanei-Ishii, C., Maekawa, T., Fujimoto, J., Yamamoto, T., and Ishii, S. (1995) J. Biol. Chem., 270, 25328–25331.CrossRefPubMedGoogle Scholar
  25. 25.
    Marx, C. J., and Lidstrom, M. E. (2001) Microbiology (UK), 147, 2065–2075.Google Scholar
  26. 26.
    Sambrook, J., and Russell, D. W. (2001) Molecular Cloning: a Laboratory Manual, 3rd Edn., Cold Spring Harbor Laboratory, N. Y.Google Scholar
  27. 27.
    Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) Nucleic Acids Res., 22, 4673–4680.CrossRefPubMedGoogle Scholar
  28. 28.
    Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007) Mol. Biol. Evol., 24, 1596–1599.CrossRefPubMedGoogle Scholar
  29. 29.
    Laemmli, U. K. (1970) Nature, 227, 680–685.CrossRefPubMedGoogle Scholar
  30. 30.
    Henco, K. (1992) The QIAexpressionist: The High Level Expression and Protein Purification System, QIAGEN Press, Hamburg.Google Scholar
  31. 31.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem., 193, 265–275.PubMedGoogle Scholar
  32. 32.
    Doronina, N. V., Ivanova, E. G., and Trotsenko, Y. A. (2002) Microbiology (Moscow), 71, 116–118.Google Scholar
  33. 33.
    Lingen, B., Kolter-Jung, D., Dunkelmann, P., Feldmann, R., Grotzinger, J., Pohl, M., and Muller, M. (2003) ChemBioChem, 4, 721–726.CrossRefPubMedGoogle Scholar
  34. 34.
    Krieger, F., Spinka, M., Golbik, R., Hubner, G., and Konig, S. (2002) Eur. J. Biohem., 269, 3256–3263.CrossRefGoogle Scholar
  35. 35.
    Prinsen, E., Costacurta, A., Michiels, K., Vanderleyden, J., and van Onckelen, H. (1993) Mol. Plant-Microbe Interact., 6, 609–615.Google Scholar
  36. 36.
    Costacurta, A., Keijers, V., and Vanderleyden, J. (1994) Mol. Gen. Genet., 243, 463–472.PubMedGoogle Scholar
  37. 37.
    Manulis, S., Haviv-Chesner, A., Brandl, M. T., Lindow, S. E., and Barash, I. (1998) Mol. Plant-Microbe Interact., 11, 634–642.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • D. N. Fedorov
    • 1
  • N. V. Doronina
    • 1
  • Yu. A. Trotsenko
    • 1
    Email author
  1. 1.Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations