Advertisement

Biochemistry (Moscow)

, Volume 75, Issue 12, pp 1428–1434 | Cite as

The Wnt/Frizzled GPCR signaling pathway

  • V. L. KatanaevEmail author
Review

Abstract

G protein-coupled receptors (GPCRs) represent the biggest transmembrane receptor family. The Frizzled group of GPCRs is evolutionarily conserved and serves to transduce signals from the Wnt-type lipoglycoprotein growth factors. The Wnt/Frizzled signaling cascades are repeatedly used during animal development and are mostly silent in the adult. Improper activation of these cascades, e.g. through somatic mutation, underlies cancer development in various tissues. Our research over the past years has identified the trimeric G proteins as crucial transducers of the Wnt/Frizzled cascades in insect and mammalian cells. The current mini-review summarizes our findings on the role of G proteins in Wnt/Frizzled signaling, as well as on identification of other signaling intermediates in this physiologically and pathologically important type of intracellular signal transduction.

Key words

Wnt Frizzled G protein-coupled receptor trimeric G proteins development carcinogenesis morphogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pierce, K. L., Premont, R. T., and Lefkowitz, R. J. (2002) Nat. Rev. Mol. Cell Biol., 3, 639–650.CrossRefPubMedGoogle Scholar
  2. 2.
    Nambi, P., and Aiyar, N. (2003) Assay Drug Dev. Technol., 1, 305–310.CrossRefPubMedGoogle Scholar
  3. 3.
    Fredriksson, R., and Schioth, H. B. (2005) Mol. Pharmacol., 67, 1414–1425.CrossRefPubMedGoogle Scholar
  4. 4.
    Scheerer, P., Park, J. H., Hildebrand, P. W., Kim, Y. J., Krauss, N., Choe, H. W., Hofmann, K. P., and Ernst, O. P. (2008) Nature, 455, 497–502.CrossRefPubMedGoogle Scholar
  5. 5.
    Oldham, W. M., and Hamm, H. E. (2008) Nat. Rev. Mol. Cell Biol., 9, 60–71.CrossRefPubMedGoogle Scholar
  6. 6.
    Oldham, W. M., and Hamm, H. E. (2007) Adv. Protein Chem., 74, 67–93.CrossRefPubMedGoogle Scholar
  7. 7.
    Milligan, G., and Kostenis, E. (2006) Br. J. Pharmacol., 147,Suppl. 1, S46–55.PubMedGoogle Scholar
  8. 8.
    Gilman, A. G. (1987) Annu. Rev. Biochem., 56, 615–649.CrossRefPubMedGoogle Scholar
  9. 9.
    Ross, E. M., and Wilkie, T. M. (2000) Annu. Rev. Biochem., 69, 795–827.CrossRefPubMedGoogle Scholar
  10. 10.
    Malbon, C. C. (2005) Nat. Rev. Mol. Cell Biol., 6, 689–701.CrossRefPubMedGoogle Scholar
  11. 11.
    Clapham, D. E., and Neer, E. J. (1997) Annu. Rev. Pharmacol. Toxicol., 37, 167–203.CrossRefPubMedGoogle Scholar
  12. 12.
    Hermans, E. (2003) Pharmacol. Ther., 99, 25–44.CrossRefPubMedGoogle Scholar
  13. 13.
    Katanaev, V. L., and Chornomorets, M. (2007) Biochem. J., 401, 485–495.CrossRefPubMedGoogle Scholar
  14. 14.
    Ferguson, S. S. (2001) Pharmacol. Rev., 53, 1–24.PubMedGoogle Scholar
  15. 15.
    MacDonald, B. T., Tamai, K., and He, X. (2009) Dev. Cell, 17, 9–26.CrossRefPubMedGoogle Scholar
  16. 16.
    Petersen, C. P., and Reddien, P. W. (2009) Cell, 139, 1056–1068.CrossRefPubMedGoogle Scholar
  17. 17.
    Gao, C., and Chen, Y. G. (2010) Cell Signal., 22, 717–727.CrossRefPubMedGoogle Scholar
  18. 18.
    Vlad, A., Rohrs, S., Klein-Hitpass, L., and Muller, O. (2008) Cell Signal., 20, 795–802.CrossRefPubMedGoogle Scholar
  19. 19.
    He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., Morin, P. J., Vogelstein, B., and Kinzler, K. W. (1998) Science, 281, 1509–1512.CrossRefPubMedGoogle Scholar
  20. 20.
    Tetsu, O., and McCormick, F. (1999) Nature, 398, 422–426.CrossRefPubMedGoogle Scholar
  21. 21.
    Logan, C. Y., and Nusse, R. (2004) Annu. Rev. Cell Dev. Biol., 20, 781–810.CrossRefPubMedGoogle Scholar
  22. 22.
    Giles, R. H., van Es, J. H., and Clevers, H. (2003) Biochim. Biophys. Acta, 1653, 1–24.PubMedGoogle Scholar
  23. 23.
    Brennan, K. R., and Brown, A. M. (2004) J. Mammary Gland Biol. Neoplasia, 9, 119–131.CrossRefPubMedGoogle Scholar
  24. 24.
    Tabata, T., and Takei, Y. (2004) Development, 131, 703–712.CrossRefPubMedGoogle Scholar
  25. 25.
    Lander, A. D. (2007) Cell, 128, 245–256.CrossRefPubMedGoogle Scholar
  26. 26.
    Bartscherer, K., and Boutros, M. (2008) EMBO Rep., 9, 977–982.CrossRefPubMedGoogle Scholar
  27. 27.
    Mikels, A. J., and Nusse, R. (2006) Oncogene, 25, 7461–7468.CrossRefPubMedGoogle Scholar
  28. 28.
    Willert, K., Brown, J. D., Danenberg, E., Duncan, A. W., Weissman, I. L., Reya, T., Yates, J. R., 3rd, and Nusse, R. (2003) Nature, 423, 448–452.CrossRefPubMedGoogle Scholar
  29. 29.
    Papkoff, J., and Schryver, B. (1990) Mol. Cell Biol., 10, 2723–2730.PubMedGoogle Scholar
  30. 30.
    Geetha-Loganathan, P., Nimmagadda, S., and Scaal, M. (2008) Organogenesis, 4, 109–115.CrossRefPubMedGoogle Scholar
  31. 31.
    Panakova, D., Sprong, H., Marois, E., Thiele, C., and Eaton, S. (2005) Nature, 435, 58–65.CrossRefPubMedGoogle Scholar
  32. 32.
    Katanaev, V. L., Solis, G. P., Hausmann, G., Buestorf, S., Katanayeva, N., Schrock, Y., Stuermer, C. A., and Basler, K. (2008) Embo J., 27, 509–521.CrossRefPubMedGoogle Scholar
  33. 33.
    Katanaev, V. L., Ponzielli, R., Semeriva, M., and Tomlinson, A. (2005) Cell, 120, 111–122.CrossRefPubMedGoogle Scholar
  34. 34.
    Egger-Adam, D., and Katanaev, V. L. (2008) Front. Biosci., 13, 4740–4755.CrossRefPubMedGoogle Scholar
  35. 35.
    Katanaev, V. L., and Tomlinson, A. (2006) Proc. Natl. Acad. Sci. USA, 103, 6524–6529.CrossRefPubMedGoogle Scholar
  36. 36.
    Katanaev, V. L., and Tomlinson, A. (2006) Cell Cycle, 5, 2464–2472.CrossRefPubMedGoogle Scholar
  37. 37.
    Kopein, D., and Katanaev, V. L. (2009) Mol. Biol. Cell, 20, 3865–3877.CrossRefPubMedGoogle Scholar
  38. 38.
    Egger-Adam, D., and Katanaev, V. L. (2010) Dev. Dyn., 239, 168–183.CrossRefPubMedGoogle Scholar
  39. 39.
    Katanaev, V. L., and Buestorf, S. (2009) Available from Nature Precedings (http://hdl.handle.net/10101/npre.2009.2765.1).
  40. 40.
    Carty, D. J., and Iyengar, R. (1994) Meth. Enzymol., 237, 38–44.CrossRefPubMedGoogle Scholar
  41. 41.
    Weiland, T., and Jakobs, K. H. (1994) Meth. Enzymol., 237, 3–13.CrossRefPubMedGoogle Scholar
  42. 42.
    Frang, H., Mukkala, V. M., Syysto, R., Ollikka, P., Hurskainen, P., Scheinin, M., and Hemmila, I. (2003) Assay Drug Dev. Technol., 1, 275–280.CrossRefPubMedGoogle Scholar
  43. 43.
    Koval, A., Kopein, D., Purvanov, V., and Katanaev, V. L. (2010) Anal. Biochem., 397, 202–207.CrossRefPubMedGoogle Scholar
  44. 44.
    Barker, N., and Clevers, H. (2006) Nat. Rev. Drug Discov., 5, 997–1014.CrossRefPubMedGoogle Scholar
  45. 45.
    Nusse, R., Fuerer, C., Ching, W., Harnish, K., Logan, C., Zeng, A., ten Berge, D., and Kalani, Y. (2008) Cold Spring Harb. Symp. Quant. Biol., 73, 59–66.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhao, J., Kim, K. A., and Abo, A. (2009) Trends Biotechnol., 27, 131–136.CrossRefPubMedGoogle Scholar
  47. 47.
    Luo, W., and Lin, S. C. (2004) Neurosignals, 13, 99–113.CrossRefPubMedGoogle Scholar
  48. 48.
    Zeng, L., Fagotto, F., Zhang, T., Hsu, W., Vasicek, T. J., Perry, W. L., 3rd, Lee, J. J., Tilghman, S. M., Gumbiner, B. M., and Costantini, F. (1997) Cell, 90, 181–192.CrossRefPubMedGoogle Scholar
  49. 49.
    Cliffe, A., Hamada, F., and Bienz, M. (2003) Curr. Biol., 13, 960–966.CrossRefPubMedGoogle Scholar
  50. 50.
    Schwarz-Romond, T., Metcalfe, C., and Bienz, M. (2007) J. Cell Sci., 120, 2402–2412.CrossRefPubMedGoogle Scholar
  51. 51.
    Kishida, S., Yamamoto, H., Hino, S., Ikeda, S., Kishida, M., and Kikuchi, A. (1999) Mol. Cell Biol., 19, 4414–4422.PubMedGoogle Scholar
  52. 52.
    Fagotto, F., Jho, E., Zeng, L., Kurth, T., Joos, T., Kaufmann, C., and Costantini, F. (1999) J. Cell Biol., 145, 741–756.CrossRefPubMedGoogle Scholar
  53. 53.
    Zerial, M., and McBride, H. (2001) Nat. Rev. Mol. Cell Biol., 2, 107–117.CrossRefPubMedGoogle Scholar
  54. 54.
    Purvanov, V., Koval, A., and Katanaev, V. L. (2010) Sci. Signal., 3, ra65.CrossRefPubMedGoogle Scholar
  55. 55.
    Blitzer, J. T., and Nusse, R. (2006) BMC Cell Biol., 7, 28.CrossRefPubMedGoogle Scholar
  56. 56.
    Seto, E. S., and Bellen, H. J. (2006) J. Cell Biol., 173, 95–106.CrossRefPubMedGoogle Scholar
  57. 57.
    Katanayeva, N., Kopein, D., Portmann, R., Hess, D., and Katanaev, V. L. (2010) PLoS One, 5, e12331.CrossRefPubMedGoogle Scholar
  58. 58.
    Gonczy, P. (2008) Nat. Rev. Mol. Cell Biol., 9, 355–366.CrossRefPubMedGoogle Scholar
  59. 59.
    Willard, F. S., Kimple, R. J., and Siderovski, D. P. (2004) Annu. Rev. Biochem., 73, 925–951.CrossRefPubMedGoogle Scholar
  60. 60.
    Du, Q., and Macara, I. G. (2004) Cell, 119, 503–516.CrossRefPubMedGoogle Scholar
  61. 61.
    Siller, K. H., and Doe, C. Q. (2009) Nat. Cell Biol., 11, 365–374.CrossRefPubMedGoogle Scholar
  62. 62.
    Schaefer, M., Petronczki, M., Dorner, D., Forte, M., and Knoblich, J. A. (2001) Cell, 107, 183–194.CrossRefPubMedGoogle Scholar
  63. 63.
    Hampoelz, B., and Knoblich, J. A. (2004) Cell, 119, 453–456.CrossRefPubMedGoogle Scholar
  64. 64.
    Blumer, J. B., Chandler, L. J., and Lanier, S. M. (2002) J. Biol. Chem., 277, 15897–15903.CrossRefPubMedGoogle Scholar
  65. 65.
    Caussinus, E., and Gonzalez, C. (2005) Nat. Genet., 37, 1125–1129.CrossRefPubMedGoogle Scholar
  66. 66.
    Sternweis, P. C., and Robishaw, J. D. (1984) J. Biol. Chem., 259, 13806–13813.PubMedGoogle Scholar
  67. 67.
    Wolfgang, W. J., Quan, F., Goldsmith, P., Unson, C., Spiegel, A., and Forte, M. (1990) J. Neurosci., 10, 1014–10s24.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Department of BiologyUniversity of KonstanzKonstanzGermany

Personalised recommendations