Advertisement

Biochemistry (Moscow)

, Volume 75, Issue 9, pp 1126–1131 | Cite as

Ornithine decarboxylase activity in rat organs and tissues under artificial hypobiosis

  • G. E. Aksyonova
  • O. S. Logvinovich
  • L. A. Fialkovskaya
  • V. N. Afanasyev
  • D. A. Ignat’ev
  • I. K. KolomiytsevaEmail author
Article

Abstract

The influence of hypothermia-hypoxia-hypercapnia on ornithine decarboxylase (ODC, EC 4.1.1.17) activities in rat organs and tissues and also on the thymocyte distribution throughout the cell cycle stages was studied. The state of artificial hypobiosis in rats on decrease in the body temperature to 14.4–18.0°C during 3.0–3.5 h was accompanied by drops in the ODC activities in the neocortex and liver by 50–60% and in rapidly proliferating tissues (thymus, spleen, and small intestine mucosa) by 80% of the control value. In kidneys the ODC activity raised to 200% of the control level. Twenty-four hours after termination of the cooling and replacing the rats under the standard conditions, the ODC activities in the neocortex, liver, kidneys, spleen, and intestinal mucosa returned to the control values, but remained decreased in the thymus. Forty-eight hours later the ODC activities in the thymus and spleen exceeded the normal level. The distribution of thymocytes throughout the cell cycle stages did not change in rats in the state of hypothermia (hypobiosis); 24 and 48 h after termination of the cooling the fraction of thymocytes in the S stage was decreased and the fraction of the cells in the G0+G1 stage was increased. The normal distribution of thymocytes throughout the cell cycle stages recovered in 72 h. Thus, in the thymus the diminution of the ODC activity preceded the suppression of the cell proliferation rate. The tissue-specific changes in the ODC activity are suggested to reflect adaptive changes in the functional and proliferative activities of organs and tissues during the development of hypobiosis under conditions of hypothermia-hypoxia-hypercapnia.

Key words

artificial hypobiosis rats ornithine decarboxylase thymocytes cell cycle 

Abbreviations

DTT

dithiothreitol

ODC

ornithine decarboxylase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Timofeev, N. N., and Prokop’eva, L. N. (1997) Neurochemistry of Hypobiosis and Limits of the Organism’s Cryoresistance [in Russian], Meditsina, Moscow.Google Scholar
  2. 2.
    Ignat’ev, D. A., Fialkovskaya, L. A., Perepelkina, N. I., Markevich, L. N., Kraev, I. V., and Kolomiytseva, I. K. (2006) Radiats. Biol. Radioekol., 46, 705–712.Google Scholar
  3. 3.
    Maistrakh, E. V. (1964) Hypothermia and Anabiosis [in Russian], Nauka, Moscow-Leningrad.Google Scholar
  4. 4.
    Konstantinova, M. M. (1961) Dokl. Akad. Nauk SSSR, 138, 223–226.Google Scholar
  5. 5.
    Lyman, C. P., Willis, J. S., Malan, A., and Wang, L. C. H. (1982) Hibernation and Torpor in Mammals and Birds, Academic Press, London.Google Scholar
  6. 6.
    Selye, H. (1960) Essays about Adaptation Syndrome [Russian translation], Medgiz, Moscow.Google Scholar
  7. 7.
    Garkavi, L. Kh., Kvakina, E. B., and Kuzmenko, T. S. (1998) Antistress Reactions and Activating Therapy. Activation Reaction as a Pathway to Health via Self-Organization [in Russian], IMEDIS, Moscow.Google Scholar
  8. 8.
    Meerson, F. Z. (1993) Adaptation Medicine: The Concept of Long-Term Adaptation [in Russian], Delo, Moscow.Google Scholar
  9. 9.
    Kolomiytseva, I. K., Kulagina, T. P., Markevich, L. N., Potekhina, N. I., Slozhenikina, L. V., and Fialkovskaya, L. A. (2002) Biofizika, 47, 1106–1115.Google Scholar
  10. 10.
    Kolomiytseva, I. K., Fialkovskaya, L. A., Afanas’ev, V. N., and Slozhenikina, L. V. (2005) Biophysics, 50,Suppl. 1, S18–S25.Google Scholar
  11. 11.
    Berdinskikh, N. K., and Zaletok, S. P. (1987) Polyamines and Tumorigenesis [in Russian], Naukova Dumka, Kiev.Google Scholar
  12. 12.
    Schuber, F. (1989) Biochem. J., 260, 1–10.PubMedGoogle Scholar
  13. 13.
    Pohjanpelto, P., Virtanen, I., and Holtta, E. (1981) Nature, 293, 475–477.CrossRefPubMedGoogle Scholar
  14. 14.
    Wallace, H. M., Fraser, A. V., and Hughes, A. (2003) Biochem. J., 376, 1–14.CrossRefPubMedGoogle Scholar
  15. 15.
    Peng, T., Rotrakarn, D., Janzen, A., and Richards, J. F. (1989) Arch. Biochem. Biophys., 273, 99–105.CrossRefPubMedGoogle Scholar
  16. 16.
    Zahner, S. L., Prahiad, K. V., and Mitchell, J. L. A. (1986) Cytobios, 45, 25–34.PubMedGoogle Scholar
  17. 17.
    Chideckel, E. W., Rozovsci, S. J., and Bellur, E. R. (1980) Biochem. J., 192, 765–767.PubMedGoogle Scholar
  18. 18.
    Melnichuk, D. O., Mikhailovskii, V. O., and Melnichuk, C. D. (2000) Ukr. Biokhim. Zh., 72, 70–80.Google Scholar
  19. 19.
    Al-Fageeh, M. B., and Smales, C. M. (2006) Biochem. J., 397, 247–259.CrossRefPubMedGoogle Scholar
  20. 20.
    Rieder, C. L., and Cole, R. W. (2002) Cell Cycle, 1, 169–175.CrossRefPubMedGoogle Scholar
  21. 21.
    Janne, J., and Williams-Ashman, H. G. (1971) J. Biol. Chem., 246, 1725–1732.PubMedGoogle Scholar
  22. 22.
    Slozhenikina, L. V., Fialkovskaya, L. A., and Kolomiytseva, I. K. (1999) Int. J. Radiat. Biol., 75, 193–199.CrossRefPubMedGoogle Scholar
  23. 23.
    Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem., 193, 265–275.PubMedGoogle Scholar
  24. 24.
    Afanasyev, V. N., Korol, B. A., Matylevich, N. P., Pechatnikov, V. A., and Umansky, S. R. (1993) Cytometry, 14, 603–609.CrossRefPubMedGoogle Scholar
  25. 25.
    Timofeev, N. N. (2005) Hypobiosis. The Past, the Present, the Future [in Russian], Inform-Znanie, Moscow.Google Scholar
  26. 26.
    Popova, N. K., Koryakina, L. A., and Kolokoltsev, A. A. (1979) Genetika, 15, 715–719.PubMedGoogle Scholar
  27. 27.
    Gilad, V. H., Rabey, J. M., Kimiagar, Y., and Gilad, J. M. (2001) Biochem. Pharmacol., 61, 207–213.CrossRefPubMedGoogle Scholar
  28. 28.
    Richards, J. F. (1978) Life Sci., 23, 1619–1624.CrossRefPubMedGoogle Scholar
  29. 29.
    Cousin, M. A., Lando, D., and Moguilewsky, M. (1982) J. Neurochem., 38, 1296–1304.CrossRefPubMedGoogle Scholar
  30. 30.
    Wang, J. Y., and Johnson, L. R. (1990) Am. J. Physiol., 258, G942–G950.PubMedGoogle Scholar
  31. 31.
    Mikhailovsky, V. O., Tsyakalo, L. V., Stognii, N. A., and Gulyi, M. F. (1982) Biomed. Khim., No. 6, 71–75.Google Scholar
  32. 32.
    Flamigni, F., Stefanelli, C., Guarnieri, C., and Caldarera, C. M. (1986) Biochim. Biophys. Acta, 882, 377–383.PubMedGoogle Scholar
  33. 33.
    Wang, J. Y., and Johnson, L. R. (1991) Gastroenterology, 100, 333–343.PubMedGoogle Scholar
  34. 34.
    Kuhn, C. M., Grignolo, A., and Schanberg, S. M. (1983) Pharmacol. Biochem. Behav., 18, 669–672.CrossRefPubMedGoogle Scholar
  35. 35.
    Butler, S. R., Suskind, M. R., and Schanberg, S. M. (1978) Science, 199, 445–447.CrossRefPubMedGoogle Scholar
  36. 36.
    Morgan, M. L., Anderson, R. J., Ellis, M. A., and Berl, T. (1983) Am. J. Physiol. Renal. Physiol., 244, F210–F216.Google Scholar
  37. 37.
    Broman, M., Kallskog, O., Nygren, K., and Wolgast, M. (1998) Acta Physiol. Scand., 162, 475–480.CrossRefPubMedGoogle Scholar
  38. 38.
    Carey, H. V., Andrews, M. T., and Martin, S. L. (2003) Physiol. Rev., 83, 1153–1181.PubMedGoogle Scholar
  39. 39.
    Pegg, A. E. (2006) J. Biol. Chem., 281, 14529–14532.CrossRefPubMedGoogle Scholar
  40. 40.
    Roobol, A., Carden, M. J., Newsam, R. J., and Smales, C. M. (2009) FEBS J., 276, 286–302.CrossRefPubMedGoogle Scholar
  41. 41.
    Yarilin, A. A. (1999) Fundamentals of Immunology [in Russian], Meditsina, Moscow.Google Scholar
  42. 42.
    Zhang, A. H., Rao, J. N., Zou, T., Liu, L., Marasa, B. S., Xiao, L., Chen, J., Turner, D. J., and Wang, J. Y. (2007) Am. J. Physiol. Cell Physiol., 293, 379–389.CrossRefGoogle Scholar
  43. 43.
    Gorizontov, P. D., Belousova, O. I., and Fedotova, M. I. (1983) Stress and the Blood System [in Russian], Meditsina, Moscow.Google Scholar
  44. 44.
    Zhang, H. M., Rao, J. N., Guo, X., Liu, L., Zou, T., Turner, D. J., and Wang, J. Y. (2004) J. Biol. Chem., 279, 22539–22547.CrossRefPubMedGoogle Scholar
  45. 45.
    Bhattacharya, S., Ray, R. M., and Johnson, L. R. (2005) Biochem. J., 392, 335–344.CrossRefPubMedGoogle Scholar
  46. 46.
    Kucharewska, P., Welch, J. E., Svensson, K. J., and Belting, M. (2009) Biochem. Biophys. Res. Commun., 380, 413–418.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • G. E. Aksyonova
    • 1
  • O. S. Logvinovich
    • 1
  • L. A. Fialkovskaya
    • 1
  • V. N. Afanasyev
    • 1
  • D. A. Ignat’ev
    • 1
  • I. K. Kolomiytseva
    • 1
    Email author
  1. 1.Institute of Cell BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations