Biochemistry (Moscow)

, Volume 75, Issue 9, pp 1115–1125 | Cite as

Inhibition of murine DNA methyltransferase Dnmt3a by DNA duplexes containing pyrimidine-2(1H)-one



Here we studied the inhibition of the catalytic domain of Dnmt3a methyltransferase (Dnmt3a-CD) by DNA duplexes containing the mechanism-based inhibitor pyrimidine-2(1H)-one (P) instead of the target cytosine. It has been shown that conjugates of Dnmt3a-CD with P-DNA (DNA containing pyrimidine-2(1H)-one) are not stable to heating at 65°C in 0.1% SDS. The yield of covalent intermediate increases in the presence of the regulatory factor Dnmt3L. The importance of the DNA minor groove for covalent intermediate formation during the methylation reaction catalyzed by Dnmt3a-CD has been revealed. P-DNA was shown to inhibit Dnmt3a-CD; the IC50 is 830 nM. The competitive mechanism of inhibition of Dnmt3a-CD by P-DNA has been elucidated. It is suggested that therapeutic effect of zebularine could be achieved by inhibition of not only Dnmt1 but also Dnmt3a.

Key words

pyrimidine-2(1H)-one covalent intermediate competitive inhibition eukaryotic DNA methyltransferase 











dimeric bisbenzimidazole






glutathione S-transferase






fluorescence polarization


DNA containing pyrimidine-2(1H)-one


melting temperature


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bird, A. (2002) Genes Dev., 16, 6–21.CrossRefPubMedGoogle Scholar
  2. 2.
    Lichtenstein, A. V., and Kisseljova, N. P. (2001) Biochemistry (Moscow), 66, 235–255.CrossRefGoogle Scholar
  3. 3.
    Fatemi, M., Hermann, A., Gowher, H., and Jeltsch, A. (2002) Eur. J. Biochem., 269, 4981–4984.CrossRefPubMedGoogle Scholar
  4. 4.
    Jones, P. A., and Liang, G. (2009) Nat. Rev. Genet., 10, 805–811.CrossRefPubMedGoogle Scholar
  5. 5.
    Baylin, S. B., Esteller, M., Rountree, M. R., Bachman, K. E., Schuebel, K., and Herman, J. G. (2001) Hum. Mol. Genet., 10, 687–692.CrossRefPubMedGoogle Scholar
  6. 6.
    Baylin, S. B., and Herman, J. G. (2000) Trends Genet., 16, 168–174.CrossRefPubMedGoogle Scholar
  7. 7.
    Jones, P. A., and Laird, P. W. (1999) Nat. Genet., 21, 163–167.CrossRefPubMedGoogle Scholar
  8. 8.
    Hermann, A., Gowher, H., and Jeltsch, A. (2004) Cell. Mol. Life Sci., 61, 2571–2587.CrossRefPubMedGoogle Scholar
  9. 9.
    Gowher, H., and Jeltsch, A. (2004) Cancer Biol. Ther., 3, 1062–1068.CrossRefPubMedGoogle Scholar
  10. 10.
    Kirsanova, O. V., Cherepanova, N. A., and Gromova, E. S. (2009) Biochemistry (Moscow), 74, 1175–1186.CrossRefGoogle Scholar
  11. 11.
    Cheng, J. C., Weisenberger, D. J., Gonzales, F. A., Liang, G., Xu, G. L., Hu, Y. G., Marquez, V. E., and Jones, P. A. (2004) Mol. Cell. Biol., 24, 1270–1278.CrossRefPubMedGoogle Scholar
  12. 12.
    Cheng, J. C., Yoo, C. B., Weisenberger, D. J., Chuang, J., Wozniak, C., Liang, G., Marquez, V. E., Greer, S., Orntoft, T. F., Thykjaer, T., and Jones, P. A. (2004) Cancer Cell, 6, 151–158.CrossRefPubMedGoogle Scholar
  13. 13.
    Billam, M., Sobolewski, M. D., and Davidson, N. E. (2009) Breast Cancer Res. Treat., 120, 581–592.CrossRefPubMedGoogle Scholar
  14. 14.
    Baubec, T., Pecinka, A., Rozhon, W., and Mittelsten Scheid, O. (2009) Plant J., 57, 542–554.CrossRefPubMedGoogle Scholar
  15. 15.
    Hurd, P. J., Whitmarsh, A. J., Baldwin, G. S., Kelly, S. M., Waltho, J. P., Price, N. C., Connolly, B. A., and Hornby, D. P. (1999) J. Mol. Biol., 286, 389–401.CrossRefPubMedGoogle Scholar
  16. 16.
    Subach, O. M., Khoroshaev, A. V., Gerasimov, D. N., Baskunov, V. B., Shchyolkina, A. K., and Gromova, E. S. (2004) Eur. J. Biochem., 271, 2391–2399.CrossRefPubMedGoogle Scholar
  17. 17.
    Darii, M. V., Cherepanova, N. A., Subach, O. M., Kirsanova, O. V., Rasko, T., Slaska-Kiss, K., Kiss, A., Deville-Bonne, D., Reboud-Ravaux, M., and Gromova, E. S. (2009) Biochim. Biophys. Acta, 1794, 1654–1662.PubMedGoogle Scholar
  18. 18.
    Zhou, L., Cheng, X., Connolly, B. A., Dickman, M. J., Hurd, P. J., and Hornby, D. P. (2002) J. Mol. Biol., 321, 591–599.CrossRefPubMedGoogle Scholar
  19. 19.
    Van Bemmel, D. M., Brank, A. S., Eritja, R., Marquez, V. E., and Christman, J. K. (2009) Biochem. Pharmacol., 78, 633–641.CrossRefPubMedGoogle Scholar
  20. 20.
    Hsieh, C. L. (2005) BMC Biochem., 6, 6.CrossRefPubMedGoogle Scholar
  21. 21.
    Gowher, H., and Jeltsch, A. (2001) J. Mol. Biol., 309, 1201–1208.CrossRefPubMedGoogle Scholar
  22. 22.
    Bourc’his, D., Xu, G. L., Lin, C. S., Bollman, B., and Bestor, T. H. (2001) Science, 294, 2536–2539.CrossRefPubMedGoogle Scholar
  23. 23.
    Hata, K., Okano, M., Lei, H., and Li, E. (2002) Development, 129, 1983–1993.PubMedGoogle Scholar
  24. 24.
    Chedin, F., Lieber, M. R., and Hsieh, C. L. (2002) Proc. Natl. Acad. Sci. USA, 99, 16916–16921.CrossRefPubMedGoogle Scholar
  25. 25.
    Suetake, I., Shinozaki, F., Miyagawa, J., Takeshima, H., and Tajima, S. (2004) J. Biol. Chem., 279, 27816–27823.CrossRefPubMedGoogle Scholar
  26. 26.
    Gowher, H., Liebert, K., Hermann, A., Xu, G., and Jeltsch, A. (2005) J. Biol. Chem., 280, 13341–13348.CrossRefPubMedGoogle Scholar
  27. 27.
    Kareta, M. S., Botello, Z. M., Ennis, J. J., Chou, C., and Chedin, F. (2006) J. Biol. Chem., 281, 25893–25902.CrossRefPubMedGoogle Scholar
  28. 28.
    Jia, D., Jurkowska, R. Z., Zhang, X., Jeltsch, A., and Cheng, X. (2007) Nature, 449, 248–251.CrossRefPubMedGoogle Scholar
  29. 29.
    Cheng, X., and Blumenthal, R. M. (2008) Structure, 16, 341–350.CrossRefPubMedGoogle Scholar
  30. 30.
    Reither, S., Li, F., Gowher, H., and Jeltsch, A. (2003) J. Mol. Biol., 329, 675–684.CrossRefPubMedGoogle Scholar
  31. 31.
    Lin, I. G., Han, L., Taghva, A., O’Brien, L. E., and Hsieh, C. L. (2002) Mol. Cell. Biol., 22, 704–723.CrossRefPubMedGoogle Scholar
  32. 32.
    Goll, M. G., and Bestor, T. H. (2005) Annu. Rev. Biochem., 74, 481–514.CrossRefPubMedGoogle Scholar
  33. 33.
    Gowher, H., and Jeltsch, A. (2002) J. Biol. Chem., 277, 20409–20414.CrossRefPubMedGoogle Scholar
  34. 34.
    Cherepanova, N. A., Ivanov, A. A., Maltseva, D. V., Minero, A. S., Gromyko, A. V., Streltsov, S. A., Zhuze, A. L., and Gromova, E. S. (2010) J. Enzyme Inhib. Med. Chem., DOI: 10.3109/14756366.2010.499098.Google Scholar
  35. 35.
    Maltseva, D. V., Baykov, A. A., Jeltsch, A., and Gromova, E. S. (2009) Biochemistry, 48, 1361–1368.CrossRefPubMedGoogle Scholar
  36. 36.
    Brennan, C. A., van Cleve, M. D., and Gumport, R. I. (1986) J. Biol. Chem., 261, 7270–7278.PubMedGoogle Scholar
  37. 37.
    Gildea, B., and McLaughlin, L. W. (1989) Nucleic Acids Res., 17, 2261–2281.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhou, Y., and Ts’o, P. O. (1996) Nucleic Acids Res., 24, 2652–2659.CrossRefPubMedGoogle Scholar
  39. 39.
    Kaluzhny, D. N., Mikhailov, S. N., Efimtseva, E. V., Borisova, O. F., Florentiev, V. L., Shchyolkina, A. K., and Jovin, T. M. (2003) Nucleosides Nucleotides Nucleic Acids, 22, 1499–1503.CrossRefPubMedGoogle Scholar
  40. 40.
    Osterman, D. G., DePillis, G. D., Wu, J. C., Matsuda, A., and Santi, D. V. (1988) Biochemistry, 27, 5204–5210.CrossRefPubMedGoogle Scholar
  41. 41.
    Wyszynski, M. W., Gabbara, S., Kubareva, E. A., Romanova, E. A., Oretskaya, T. S., Gromova, E. S., Shabarova, Z. A., and Bhagwat, A. S. (1993) Nucleic Acids Res., 21, 295–301.CrossRefPubMedGoogle Scholar
  42. 42.
    Jurkowska, R. Z., Anspach, N., Urbanke, C., Jia, D., Reinhardt, R., Nellen, W., Cheng, X., and Jeltsch, A. (2008) Nucleic Acids Res., 36, 6656–6663.CrossRefPubMedGoogle Scholar
  43. 43.
    Maltseva, D. V., and Gromova, E. S. (2010) Biochemistry (Moscow), 75, 173–181.CrossRefGoogle Scholar
  44. 44.
    Ford, K., Taylor, C., Connolly, B., and Hornby, D. P. (1993) J. Mol. Biol., 230, 779–786.CrossRefPubMedGoogle Scholar
  45. 45.
    Klimasauskas, S., Kumar, S., Roberts, R. J., and Cheng, X. (1994) Cell, 76, 357–369.CrossRefPubMedGoogle Scholar
  46. 46.
    Subach, O. M., Baskunov, V. B., Darii, M. V., Maltseva, D. V., Alexandrov, D. A., Kirsanova, O. V., Kolbanovskiy, A., Kolbanovskiy, M., Johnson, F., Bonala, R., Geacintov, N. E., and Gromova, E. S. (2006) Biochemistry, 45, 6142–6159.CrossRefPubMedGoogle Scholar
  47. 47.
    Subach, O. M., Maltseva, D. V., Shastry, A., Kolbanovskiy, A., Klimasauskas, S., Geacintov, N. E., and Gromova, E. S. (2007) FEBS J., 274, 2121–2134.CrossRefPubMedGoogle Scholar
  48. 48.
    Teng, M. K., Usman, N., Frederick, C. A., and Wang, A. H. (1988) Nucleic Acids Res., 16, 2671–2690.CrossRefPubMedGoogle Scholar
  49. 49.
    Streltsov, S. A., Gromyko, A. V., Oleinikov, V. A., and Zhuze, A. L. (2006) J. Biomol. Struct. Dyn., 24, 285–302.PubMedGoogle Scholar
  50. 50.
    Evdokimov, A. A., Zinovev, V. V., Kuznetsov, V. V., Netesova, N. A., and Malygin, E. G. (2009) Mol. Biol. (Moscow), 43, 455–463.Google Scholar
  51. 51.
    Deng, T., Kuang, Y., Wang, L., Li, J., Wang, Z., and Fei, J. (2009) Biochem. Biophys. Res. Commun., 387, 611–616.CrossRefPubMedGoogle Scholar
  52. 52.
    Ng, E. K., Tsang, W. P., Ng, S. S., Jin, H. C., Yu, J., Li, J. J., Rocken, C., Ebert, M. P., Kwok, T. T., and Sung, J. J. (2009) Br. J. Cancer, 101, 699–706.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • N. A. Cherepanova
    • 1
  • A. L. Zhuze
    • 2
  • E. S. Gromova
    • 1
  1. 1.Faculty of ChemistryLomonosov Moscow State UniversityMoscowRussia
  2. 2.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations