Biochemistry (Moscow)

, Volume 75, Issue 8, pp 1006–1013 | Cite as

A new acylamidase from Rhodococcus erythropolis TA37 can hydrolyze N-substituted amides

  • K. V. Lavrov
  • I. A. Zalunin
  • E. K. Kotlova
  • A. S. YanenkoEmail author


A new acylamidase was isolated from Rhodococcus erythropolis TA37 and characterized. N-Substituted acrylamides (isopropyl acrylamide, N,N-dimethyl-aminopropyl acrylamide, and methylene-bis-acrylamide), acid para-nitroanilides (4′-nitroacetanilide, Gly-pNA, Ala-pNA, Leu-pNA), and N-acetyl derivatives of glycine, alanine, and leucine are good substrates for this enzyme. Aliphatic amides (acetamide, acrylamide, isobutyramide, n-butyramide, and valeramide) are also used as substrates but with less efficiency. The enzyme subunit mass by SDS-PAGE is 55 kDa. Maximal activity is exhibited at pH 7–8 and 55°C. The enzyme is stable for 15 h at 22°C and for 0.5 h at 45°C. The Michaelis constant (K m) is 0.25 mM with Gly-pNA and 0.55 mM with Ala-pNA. The acylamidase activity is suppressed by inhibitors of serine proteases (phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate) but is not suppressed by inhibitors of aliphatic amidases (acetaldehyde and nitrophenyl disulfides). The N-terminal amino acid sequence of the acylamidase is highly homologous to those of two putative amidases detected from sequenced R. erythropolis genomes. It is suggested that the acylamidase together with the detected homologs forms a new class within the amidase signature family.

Key words

Rhodococcus erythropolis amidase N-substituted amides acrylamide N-acetylamino acids 



alanine para-nitroanilide


diisopropyl fluorophosphate


glycine para-nitroanilide


leucine para-nitroanilide




phenylmethylsulfonyl fluoride


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Finn, R., Mistry, J., Tate, J., Coggill, P., Heger, A., et al. (2009) Nucleic Acids Res., 17, D211–D222.Google Scholar
  2. 2.
    Bork, P., and Koonin, E. (1994) Protein Sci., 3, 1344–1346.CrossRefPubMedGoogle Scholar
  3. 3.
    Kotlova, E. K., Chestukhina, G. G., Astaurova, O. B., Leonova, T. E., Yanenko, A. S., and Debabov, V. G. (1999) Biochemistry (Moscow), 64, 384–389.Google Scholar
  4. 4.
    Pertsovich, S. I., Guranda, D. T., Podchernyaev, D. A., Yanenko, A. S., and Svedas, V. K. (2005) Biochemistry (Moscow), 70, 1280–1287.CrossRefGoogle Scholar
  5. 5.
    Fournand, D., and Arnaud, A. (2001) J. Appl. Microbiol., 91, 381–393.CrossRefPubMedGoogle Scholar
  6. 6.
    McKinney, M., and Cravatt, B. (2003) J. Biol. Chem., 26, 37393–37399.CrossRefGoogle Scholar
  7. 7.
    Kobayashi, M., Fujiwara, Y., Goda, M., Komeda, H., and Shimizu, S. (1997) Proc. Natl. Acad. Sci. USA, 94, 11986–11991.CrossRefPubMedGoogle Scholar
  8. 8.
    Labahn, J., Neumann, S., Buldt, G., Kula, M., and Granzin, J. (2002) J. Mol. Biol., 4, 1053–1064.CrossRefGoogle Scholar
  9. 9.
    Mayaux, J., Cerebelaud, E., Soubrier, F., Faucher, D., and Petre, D. (1990) J. Bacteriol., 172, 6764–6773.PubMedGoogle Scholar
  10. 10.
    Hirrlinger, B., Stolz, A., and Knackmuss, H. (1996) J. Bacteriol., 178, 3501–3507.PubMedGoogle Scholar
  11. 11.
    Abramova, L. I., Bajburdov, T. A., Grigoryan, E. P., Zilberman, E. N., Kurenkov, V. F., et al. (1992) Polyacrylamide (Kurenkov, V. F., ed.) [in Russian], Khimiya, Moscow.Google Scholar
  12. 12.
    Boger, D., Fecik, R., Patterson, J., Miyauchi, H., Patricelli, M., and Cravatt, B. (2000) Bioorg. Med. Chem. Lett., 4, 2613–2616.CrossRefGoogle Scholar
  13. 13.
    Grinberg, V., Burova, T., Grinberg, N., Shcherbakova, T., Guranda, D., et al. (2008) Biochim. Biophys. Acta, 1784, 736–746.PubMedGoogle Scholar
  14. 14.
    Laemmli, U. (1970) Nature, 15, 680–685.CrossRefGoogle Scholar
  15. 15.
    D’Abusco, A., Ammendola, S., Scandurra, R., and Politi, L. (2001) Extremophiles, 5, 183–192.CrossRefPubMedGoogle Scholar
  16. 16.
    Ciskanik, L., Wilczek, J., and Fallon, R. (1995) Appl. Environ. Microbiol., 61, 998–1003.PubMedGoogle Scholar
  17. 17.
    Komeda, H., Harada, H., Washika, S., Sakamoto, T., Ueda, M., and Asano, Y. (2004) Eur. J. Biochem., 271, 1580–1590.CrossRefPubMedGoogle Scholar
  18. 18.
    Hayatsu, M., Mizutani, A., Hashimoto, M., Sato, K., and Hayano, K. (2001) FEMS Microbiol. Lett., 10, 99–103.CrossRefGoogle Scholar
  19. 19.
    Gopalakrishna, K., Stewart, B., Kneen, M., Andricopulo, A., Kenyon, G., and McLeish, M. (2004) Biochemistry, 22, 7725–7735.CrossRefGoogle Scholar
  20. 20.
    Wei, Y., Kurihara, T., Suzuki, T., and Esaki, N. (2003) J. Mol. Cat. B: Enzymatic, 23, 357–365.CrossRefGoogle Scholar
  21. 21.
    Shin, S., Yun, Y., Koo, H., Kim, Y., Choi, K., and Oh, B. (2003) J. Biol. Chem., 4, 24937–24943.CrossRefGoogle Scholar
  22. 22.
    Kobayashi, M., Komeda, H., Nagasawa, T., Nishiyama, M., Horinouchi, S., Beppu, T., Yamada, H., and Shimizu, S. (1993) Eur. J. Biochem., 217, 327–336.CrossRefPubMedGoogle Scholar
  23. 23.
    Fournand, D., Bigey, F., and Arnaud, A. (1998) Appl. Environ. Microbiol., 64, 2844–2852.PubMedGoogle Scholar
  24. 24.
    Hirrlinger, B., Stolz, A., and Knackmuss, H. (1996) J. Bacteriol., 178, 3501–3507.PubMedGoogle Scholar
  25. 25.
    Altschul, S., Gish, W., Miller, W., Myers, E., and Lipman, D. (1990) J. Mol. Biol., 215, 403–410.PubMedGoogle Scholar
  26. 26.
    O’Mahony, R., Doran, J., Coffey, L., Cahill, O., Black, G., and O’Reilly, C. (2005) Antonie van Leeuwenhoek, 87, 221–232.CrossRefPubMedGoogle Scholar
  27. 27.
    Marchler-Bauer, A., Anderson, J., Chitsaz, F., Derbyshire, M., DeWeese-Scott, C., et al. (2009) Nucleic Acids Res., 37, 205–210.CrossRefGoogle Scholar
  28. 28.
    The UniProt Consortium (2009) Nucleic Acids Res., 37, D169–D174.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • K. V. Lavrov
    • 1
  • I. A. Zalunin
    • 1
  • E. K. Kotlova
    • 1
  • A. S. Yanenko
    • 1
    Email author
  1. 1.Institute for Genetics and Selection of Industrial MicroorganismsMoscowRussia

Personalised recommendations