Biochemistry (Moscow)

, Volume 75, Issue 8, pp 951–958

Renalase, a new secretory enzyme responsible for selective degradation of catecholamines: Achievements and unsolved problems

  • A. E. Medvedev
  • A. V. Veselovsky
  • V. I. Fedchenko


Renalase is a recently discovered secretory enzyme responsible for selective degradation of blood catecholamines. The review summarizes literature data on expression of this enzyme and on its structure and functions. Special attention is paid to unsolved and questionable problems including: 1) prediction of the presence of FAD in the protein structure based on amino acid sequence similarity of renalase with known FAD-dependent enzymes; 2) identity of plasma and urinary renalase; 3) mechanism underlying conversion of inactive renalase into the active form.

Key words

catecholamines enzymatic degradation renalase structure function bioinformation analysis of amino acid sequence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xu, J., Li, G., Wang, P., Velazquez, H., Yao, X., Li, Y., Wu, Y., Peixoto, A., Crowley, S., and Desir, G. V. (2005) J. Clin. Invest., 115, 1275–1280.PubMedGoogle Scholar
  2. 2.
    Luft, F. C. (2005) Cell Metab., 1, 358–360.CrossRefPubMedGoogle Scholar
  3. 3.
    Boomsma, F., and Tipton, K. F. (2007) J. Neural. Transm., 114, 775–776.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhao, Q., Fan, Z., He, J., Chen, S., Li, H., Zhang, P., Wang, L., Hu, D., Huang, J., Qiang, B., and Gu, D. (2007) J. Mol. Med., 85, 877–885.CrossRefPubMedGoogle Scholar
  5. 5.
    Ghosh, S. S., Krieg, R. J., Sica, D. A., Wang, R., Fakhry, I., and Gehr, T. (2009) Pediatr. Nephrol., 24, 367–377.CrossRefPubMedGoogle Scholar
  6. 6.
    Eisenhofer, G., Kopin, I. J., and Goldstein, D. S. (2004) Pharmacol. Rev., 56, 331–349.CrossRefPubMedGoogle Scholar
  7. 7.
    O’sullivan, J., Unzeta, M., Healy, J., O’sullivan, M. I., Davey, G., and Tipton, K. F. (2004) Neurotoxicology, 25, 303–315.CrossRefPubMedGoogle Scholar
  8. 8.
    Klinman, J. P. (2003) Biochim. Biophys. Acta, 1647, 131–137.PubMedGoogle Scholar
  9. 9.
    Boomsma, F., Bhaggoe, U. M., van der Houwen, A. M., and van den Meiracker, A. H. (2003) Biochim. Biophys. Acta, 1647, 48–54.PubMedGoogle Scholar
  10. 10.
    Gokturk, C., Sugimoto, H., Blomgren, B., Roomans, G. M., Forsberg-Nilsson, K., Oreland, L., and Sjoquist, M. (2007) Am. J. Hyperten., 20, 743–750.CrossRefGoogle Scholar
  11. 11.
    Lin, S. Y., Wang, C. C., Lu, Y. L., Wu, W. C., and Hou, W. C. (2008) Food Chem. Toxicol., 46, 2485–2492.CrossRefPubMedGoogle Scholar
  12. 12.
    Healy, J., and Tipton, K. (2007) J. Neural. Transm., 114, 777–781.CrossRefPubMedGoogle Scholar
  13. 13.
    Saenko, E. L., Siverina, O. B., Basevich, V. V., and Yaropolov, A. I. (1990) Biochem. Int., 20, 1049–1058.PubMedGoogle Scholar
  14. 14.
    Ryan, T. P., Miller, D. M., and Aust, S. D. (1993) J. Biochem. Toxicol., 8, 33–39.CrossRefPubMedGoogle Scholar
  15. 15.
    Hennebry, S. C., Eikelis, N., Socratous, F., Lambert, G., Straznicky, N., and Schlaich, M. P. (2009) Hypertension, 53, 1108.Google Scholar
  16. 16.
    Hennebry, S. C., Eikelis, N., Socratous, F., Desir, G., Lambert, G., and Schlaich, M. P. (2010) Mol. Psychiatry, 15, 234–236.CrossRefPubMedGoogle Scholar
  17. 17.
    Wang, J., Qi, S., Cheng, W., Li, L., Wang, F., Li, Y. Z., and Zhang, S. P. (2008) Mol. Biol. Rep., 35, 613–620.CrossRefPubMedGoogle Scholar
  18. 18.
    Li, G., Xu, J., Wang, P., Velazquez, H., Li, Y., Wu, Y., and Desir, G. V. (2008) Circulation, 117, 1277–1282.CrossRefPubMedGoogle Scholar
  19. 19.
    Xu, J., and Desir, G. V. (2007) Curr. Opin. Nephrol. Hypertens., 16, 373–378.CrossRefPubMedGoogle Scholar
  20. 20.
    Desir, G. V. (2008) Curr. Opin. Nephrol. Hypertens., 17, 181–185.CrossRefPubMedGoogle Scholar
  21. 21.
    Socratous, F., Eikelis, N., Hennebry, S., and Schlaich, M. P. (2009) Hypertension, 53, 1117.Google Scholar
  22. 22.
    Bach, A. W. J., Lan, N. C., Johnson, D. L., Abell, C. W., Bembenek, M. E., Kwan, S.-W., Seeburg, P. H., and Shih, J. C. (1988) Proc. Natl. Acad. Sci. USA, 85, 4934–4938.CrossRefPubMedGoogle Scholar
  23. 23.
    Gough, J., Karplus, K., Hughey, R., and Chothia, C. (2001) J. Mol. Biol., 313, 903–919.CrossRefPubMedGoogle Scholar
  24. 24.
    Cozzetto, D., Giorgetti, A., Raimondo, D., and Tramontano, A. (2008) Mol. Biotechnol., 39, 1–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Nandigama, R. K., and Edmondson, D. E. (2000) J. Biol. Chem., 275, 20527–20532.CrossRefPubMedGoogle Scholar
  26. 26.
    Fraaije, M. W., van den Heuvel, R. H. H., van Berkel, W. J. H., and Mattevi, A. (1999) J. Biol. Chem., 274, 35514–35520.CrossRefPubMedGoogle Scholar
  27. 27.
    Nishikimi, M., Kobayashi, J., and Yagi, K. (1994) Biochem. Mol. Biol. Int., 3, 313–320.Google Scholar
  28. 28.
    Kiuchi, K., Nishikimi, M., and Yagi, K. (1980) Biochim. Biophys. Acta, 630, 330–337.PubMedGoogle Scholar
  29. 29.
    Adachi, J., Kumar, Ch., Zhang, Y., Olsen, J. V., and Mann, M. (2006) Genome Biol., 9, R80 ( Scholar
  30. 30.
    Novotny, W. F., Chassande, O., Baker, M., Lazdunski, M., and Barbry, P. (1994) J. Biol. Chem., 269, 9921–9925.PubMedGoogle Scholar
  31. 31.
    Giarnieri, D., Costa, M. T., Giarnieri, V., and Mondovi, B. (1985) Agents Actions, 16, 249–251.CrossRefPubMedGoogle Scholar
  32. 32.
    Minamiura, N., Kimura, Y., Tsujino, K., and Yamamoto, T. (1975) J. Biochem., 77, 163–169.PubMedGoogle Scholar
  33. 33.
    Ferey-Roux, G., Perrier, J., Forest, E., Marchis-Mouren, G., Puigserver, A., and Santimone, M. (1998) Biochim. Biophys. Acta, 1388, 10–20.PubMedGoogle Scholar
  34. 34.
    Enroth, C., Eger, B. T., Okamoto, K., Nishinoi, T., Nishino, T., and Pai, E. F. (2000) Proc. Natl. Acad. Sci. USA, 97, 10723–10728.CrossRefPubMedGoogle Scholar
  35. 35.
    Deller, S., Macheroux, P., and Sollner, S. (2008) Cell. Mol. Life Sci., 65, 141–160.CrossRefPubMedGoogle Scholar
  36. 36.
    Moffa, D. J., Lotspeich, F. J., and Krause, R. F. (1970) J. Biol. Chem., 245, 439–447.PubMedGoogle Scholar
  37. 37.
    Beutler, E. (1969) J. Clin. Invest., 48, 1957–1966.CrossRefPubMedGoogle Scholar
  38. 38.
    Worthington, D. J., and Rosemeyer, M. (1975) Eur. J. Biochem., 60, 459–466.CrossRefPubMedGoogle Scholar
  39. 39.
    Yubisui, T., Matsuki, T., Takeshita, M., and Yoneyama, Y. (1979) J. Biochem., 85, 719–728.PubMedGoogle Scholar
  40. 40.
    Churchich, J. E. (1984) Eur. J. Biochem., 138, 327–332.CrossRefPubMedGoogle Scholar
  41. 41.
    Musayev, F. N., Di Salvo, M. L., Ko, T. P., Schirch, V., and Safo, M. K. (2003) Protein Sci., 12, 1455–1463.CrossRefPubMedGoogle Scholar
  42. 42.
    Tschantz, W. R., Digits, J. A., Pyun, H. J., Coates, R. M., and Casey, P. J. (2001) J. Biol. Chem., 276, 2321–2324.CrossRefPubMedGoogle Scholar
  43. 43.
    Travis, J., and Salvesen, G. S. (1983) Annu. Rev. Biochem., 52, 655–709.CrossRefPubMedGoogle Scholar
  44. 44.
    Gooptu, B., and Lomas, D. A. (2009) Annu. Rev. Biochem., 78, 147–176.CrossRefPubMedGoogle Scholar
  45. 45.
    Ricart-Jane, D., Casanovas, A., Jane, N., Gonzalez, M. A., Buira-Morell, I., Ribera, J., Miquel Llobera, M., and Lopez-Tejero, M. D. (2008) Cell Physiol. Biochem., 22, 525–530.CrossRefPubMedGoogle Scholar
  46. 46.
    Pandini, V., Ciriello, F., Tedeschi, G., Rossoni, G., Zanetti, G., and Aliverti, A. (2010) Protein Expr. Purif., doi:10.1016/j.pep.2010.03.008.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. E. Medvedev
    • 1
  • A. V. Veselovsky
    • 1
  • V. I. Fedchenko
    • 1
  1. 1.Institute of Biomedical ChemistryRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations