Advertisement

Biochemistry (Moscow)

, Volume 75, Issue 7, pp 938–943 | Cite as

Isoforms of human O-GlcNAcase show distinct catalytic efficiencies

  • Jing LiEmail author
  • Cai-luan Huang
  • Lian-wen Zhang
  • Lin Lin
  • Zhong-hua Li
  • Fu-wu Zhang
  • Peng WangEmail author
Article

Abstract

O-GlcNAcase (OGA) is a family 84 glycoside hydrolase catalyzing the hydrolytic cleavage of O-linked β-N-acetylglucosamine (O-GlcNAc) from serine and threonine residues of proteins. Thus far, three forms of OGA have been identified in humans. Here we optimized the expression of these isoforms in E. coli and characterized their kinetic properties. Using Geno 3D, we predicted that N-terminal amino acids 63–342 form the catalytic site for O-GlcNAc removal and characterized it. Large differences are observed in the Km value and catalytic efficiency (kcat/Km) for the three OGA variants, though all of them displayed O-GlcNAc hydrolase activity. The full-length OGA had the lowest Km value of 0.26 mM and the highest catalytic efficiency of 3.51·103. These results reveal that the N-terminal region (a.a. 1–350) of OGA contains the catalytic site for glycoside hydrolase and the C-terminal region of the coding sequence has the ability to stabilize the native three-dimensional structure and further affect substrate affinity.

Key words

O-GlcNAcase isoform substrate affinity catalytic efficiency 

Abbreviations

DTT

dithiothreitol

fOGA

full-length O-GlcNAcase

IPTG

isopropyl-L-thio-β-D-galactopyranoside

LB

Luria-Bertani (broth)

MGEA5

meningioma expressed antigen 5

4-MU-GlcNAc

4-methylumbelliferyl-2-acetamido-2-deoxy-β-D-glucopyranoside

OGA

O-GlcNAcase

PCD

programmed cell death

sOGA

the shortest OGA

vOGA

variant of OGA

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Henrissat, B., and Bairoch, A. (1996) Biochem. J., 316, 695–696.PubMedGoogle Scholar
  2. 2.
    Wells, H., Vosseller, K., and Hart, G. W. (2001) Science, 291, 2376–2378.CrossRefPubMedGoogle Scholar
  3. 3.
    Torres, C. R., and Hart, G. W. (1984) J. Biol. Chem., 259, 3308–3317.PubMedGoogle Scholar
  4. 4.
    Hart, G. W., Housley, M. P., and Slawson, C. (2007) Nature, 446, 1017–1022.CrossRefPubMedGoogle Scholar
  5. 5.
    Zeidan, Q., and Hart, G. W. (2010) J. Cell. Sci., 123, 13–22.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang, F., Su, K., Yang, X., Bowe, D. B., Paterson, A. J., and Kudlow, J. E. (2003) Cell, 115, 715–725.CrossRefPubMedGoogle Scholar
  7. 7.
    Yang, X., Ongusaha, P. P., Miles, P. D., Havstad, J. C., Zhang, F., So, W. V., Kudlow, J. E., Michell, R. H., Olefsky, J. M., and Field, S. J. (2008) Nature, 451, 964–969.CrossRefPubMedGoogle Scholar
  8. 8.
    Fischer, P. M. (2008) Nat. Chem. Biol., 4, 448–449.CrossRefPubMedGoogle Scholar
  9. 9.
    Kang, J. G., Park, S. Y., Ji, S., Jang, I., Park, S., and Kim, H. S. (2009) J. Biol. Chem., 284, 34777–34784.CrossRefPubMedGoogle Scholar
  10. 10.
    Lubas, W. A., Frank, D. W., Krause, M., and Hanover, J. A. (1997) J. Biol. Chem., 272, 9316–9324.CrossRefPubMedGoogle Scholar
  11. 11.
    Gao, Y., Wells, L., Comer, F. I., Parker, G. J., and Hart, G. W. (2001) J. Biol. Chem., 276, 9838–9845.CrossRefPubMedGoogle Scholar
  12. 12.
    Bertram, L., Blacker, D., Mullin, K., Keeney, D., Jones, J., Basu, S., Yhu, S., and Tanzi, R. E. (2000) Science, 290, 2302–2303.CrossRefPubMedGoogle Scholar
  13. 13.
    Schultz, J., and Pils, B. (2002) FEBS Lett., 529, 179–182.CrossRefPubMedGoogle Scholar
  14. 14.
    Comtesse, N., Maldener, E., and Meese, E. (2001) Biochem. Biophys. Res. Commun., 283, 634–640.CrossRefPubMedGoogle Scholar
  15. 15.
    Wells, L., Gao, Y., Mahoney, J. A., Vosseller, K., Chen, C., Rosen, A., and Hart, G. W. (2002) J. Biol. Chem., 277, 1755–1761.CrossRefPubMedGoogle Scholar
  16. 16.
    Bradford, M. M. (1976) Anal. Biochem., 72, 248–254.CrossRefPubMedGoogle Scholar
  17. 17.
    Laemmli, U. K. (1970) Nature, 227, 680–685.CrossRefPubMedGoogle Scholar
  18. 18.
    Christophe, C., Martin, J., Gilbert, D., and Christophe, G. (2002) Bioinformatics, 18, 213–214.CrossRefGoogle Scholar
  19. 19.
    Macauley, M. S., Whitworth, G. E., Debowski, A. W., Chin, D., and Vocadlo, D. J. (2005) J. Biol. Chem., 280, 25313–25322.CrossRefPubMedGoogle Scholar
  20. 20.
    Kim, E. J., Kang, D. O., Love, D. C., and Hanover, J. A. (2006) Carbohydr. Res., 341, 971–982.CrossRefPubMedGoogle Scholar
  21. 21.
    Cuetinbasu, N., Macauley, M. S., Stubbs, K. A., Drapala, R., and Vocadlo, D. J. (2006) Biochemistry, 45, 3835–3844.CrossRefGoogle Scholar
  22. 22.
    Dennis, R. J., Taylor, E. J., Macauley, M. S., Stubbs, K. A., Turkenburg, J. P., Hart, S. J., Black, G. N., Vocadlo, D. J., and Davies, G. J. (2006) Nat. Chem. Biol., 13365–13371.Google Scholar
  23. 23.
    Yin, J., Li, L., Shaw, N., Li, Y., Song, J. K., Zhang, W., Xia, C. F., Zhang, R. G., Joachimiak, A., Zhang, H. C., Wang, L. X., Liu, Z. J., and Wang, P. (2009) PLoS ONE, 4, e4658.CrossRefPubMedGoogle Scholar
  24. 24.
    Zachara, N. E., and Hart, G. W. (2004) Biochim. Biophys. Acta, 1673, 13–28.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.College of Pharmacy and State Key Laboratory of Element-Organic ChemistryNankai UniversityTianjinChina

Personalised recommendations