Biochemistry (Moscow)

, Volume 75, Issue 7, pp 930–937 | Cite as

Characterization of a new RNase HII and its essential amino acid residues in the archaeon Sulfolobus tokodaii reveals a regulatory C-terminus

  • Ke Zhan
  • Zheng-Guo HeEmail author


The archaea possess RNase H proteins that share features of both prokaryotic and eukaryotic forms. Although the Sulfolobus RNase HI has been reported to have unique structural and biochemical properties, its RNase HII has not yet been investigated and its biochemical properties remain unknown. In the present study, we have characterized the ST0519 RNase HII from S. tokodaii as a new form. The enzyme utilized hybrid RNA/DNA as a substrate and had an optimal temperature between 37 and 50°C. The activity of wild-type protein was stimulated by Mn2+, whereas this cation significantly inhibited the activity of C-terminal truncated mutant proteins. A series of mutation assays revealed a regulatory C-terminal tail in the S. tokodaii RNase HII. One mutant, ST0519 (residues 1–195), retained only partial activity, while ST0519 (residues 1–196) completely lost its activity. Based on the presumed structure, the C-terminus might form a short α-helix in which two residues, I195 and L196, are essential for the cleavage activity. Our data suggest that the C-terminal α-helix is likely involved in the Mn2+-dependent substrate cleavage activity through stabilization of a flexible loop structure. Our findings offer important clues for further understanding the structure and function of both archaeal and eukaryotic RNase HII.

Key words

Sulfolobus tokodaii RNase HII nuclease archaea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Qiu, J., Qian, Y., Frank, P., Wintersberger, U., and Shen, B. (1999) Mol. Cell. Biol., 198, 361–8371.Google Scholar
  2. 2.
    Arudchandran, A., Cerritelli, S., Narimatsu, S., Itaya, M., Shin, D. Y., Shimada, Y., and Crouch, R. J. (2000) Genes Cells, 5, 789–802.CrossRefPubMedGoogle Scholar
  3. 3.
    Chai, Q., Qiu, J., Chapados, B. R., and Shen, B. (2001) Biochem. Biophys. Res. Commun., 286, 1073–1081.CrossRefPubMedGoogle Scholar
  4. 4.
    Haruki, M., Noguchi, E., Nakai, C., Liu, Y., Oobatake, M., Itaya, M., and Kanaya, S. (1994) Eur. J. Biochem., 220, 623–631.CrossRefPubMedGoogle Scholar
  5. 5.
    Kanaya, S., and Crouch, R. J. (1983) J. Biol. Chem., 25, 1276–1281.Google Scholar
  6. 6.
    Tadokoro, T., and Kanaya, S. (2009) FEBS J., 76, 1482–1493.CrossRefGoogle Scholar
  7. 7.
    Naoto, O., Mitsuru, H., Ayumu, M., Masaaki, M., and Shigenori, K. (2000) J. Biochem., 127, 895–899.Google Scholar
  8. 8.
    Itaya, M. (1990) Proc. Natl. Acad. Sci. USA, 87, 8587–8591.CrossRefPubMedGoogle Scholar
  9. 9.
    Kanaya, S., Oobatake, M., and Liu, Y. (1996) J. Biol. Chem., 271, 32729–32736.CrossRefPubMedGoogle Scholar
  10. 10.
    Tsunaka, Y., Haruki, M., Morikawa, M., Oobatake, M., and Kanaya, S. (2003) Biochemistry, 42, 3366–3374.CrossRefPubMedGoogle Scholar
  11. 11.
    Katayanagi, K., Miyagawa, M., Matsushima, M., Ishikawa, M., Kanaya, S., Ikehara, M., Matsuzaki, T., and Morikawa, K. (1990) Nature, 6290, 306–309.CrossRefGoogle Scholar
  12. 12.
    Ohtani, N., Yanagawa, H., Tomita, M., and Itaya, M. (2004) Biochem. J., 381, 795–802.CrossRefPubMedGoogle Scholar
  13. 13.
    Cerritelli, S. M., Fedoroff, O. Y., Reid, B. R., and Crouch, R. J. (1998) Nucleic Acids Res., 26, 1834–1840.CrossRefPubMedGoogle Scholar
  14. 14.
    Lai, L., Yokota, H., Hung, L. W., Kim, R., and Kim, S. H. (2000) Structure, 8, 897–904.CrossRefPubMedGoogle Scholar
  15. 15.
    Muroya, A., Tsuchiya, D., Ishikawa, M., Haruki, M., Morikawa, M., Kanaya, S., and Morikawa, K. (2001) Protein Sci., 10, 707–714.CrossRefPubMedGoogle Scholar
  16. 16.
    Tye, B. K. (2000) Proc. Natl. Acad. Sci. USA, 97, 2399–2401.CrossRefPubMedGoogle Scholar
  17. 17.
    Bernander, B. (2000) Trends Microbiol., 8, 278–283.CrossRefPubMedGoogle Scholar
  18. 18.
    Kelman, L. M., and Kelman, Z. (2003) Mol. Microbiol., 48, 605–615.CrossRefPubMedGoogle Scholar
  19. 19.
    Ohtani, N., Yanagawa, H., Tomita, M., and Itaya, M. (2004) Nucleic Acids Res., 32, 5809–5819.CrossRefPubMedGoogle Scholar
  20. 20.
    Kawarabayasi, Y., Hino, Y., Horikawa, H., Jin-no, K., Takahashi, M., Sekine, M., Baba, S., Ankai, A., Kosugi, H., Hosoyama, A., Fukui, S., Nagai, Y., Nishijima, K., Otsuka, R., Nakazawa, H., Takamiya, M., Kato, Y., Yoshizawa, T., Tanaka, T., Kudoh, Y., Yamazaki, J., Kushida, N., Oguchi, A., Aoki, K., Masuda, S., Yanagii, M., Nishimura, M., Yamagishi, A., Oshima, T., and Kikuchi, H. (2001) DNA Res., 8, 123–140.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang, L., Zhang, L., Liu, Y., Yang, S., Gao, C., Gong, H., Feng, Y., and He, Z. G. (2009) Proc. Natl. Acad. Sci. USA, 106, 7792–7797.CrossRefPubMedGoogle Scholar
  22. 22.
    Gill, S. C., and von Hippel, P. H. (1989) Anal. Biochem., 182, 319–326.CrossRefPubMedGoogle Scholar
  23. 23.
    Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006) Bioinformatics, 22, 195–201.CrossRefPubMedGoogle Scholar
  24. 24.
    Shaban, N. M., Harvey, S., Perrino, F. W., and Hollis, T. (2010) J. Biol. Chem., 285, 3617–3624.CrossRefPubMedGoogle Scholar
  25. 25.
    Keck, J. L., Goedken, E. R., and Marqusee, S. (1998) J. Biol. Chem., 273, 4128–34133.CrossRefGoogle Scholar
  26. 26.
    Kanaya, S. (1998) Ribonucleases H, INSERM, Paris, pp. 1–38.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina

Personalised recommendations