Advertisement

Biochemistry (Moscow)

, Volume 75, Issue 7, pp 912–918 | Cite as

Nature of cation-π interactions and their role in structural stability of immunoglobulin proteins

  • I. A. Tayubi
  • R. SethumadhavanEmail author
Article

Abstract

Cation-π interactions are known to be important contributors to protein stability and ligand-protein interactions. In this study, we have analyzed the influence of cation-π interactions in single chain immunoglobulin proteins. We observed 87 cation-π interactions in a data set of 33 proteins. These interactions are mainly formed by long-range contacts, and there is preference of Arg over Lys in these interactions. Arg-Tyr interactions are predominant among the various pairs analyzed. Despite the scarcity of interactions involving Trp, the average energy for Trp-cation interactions is quite high. This information suggests that the cation-π interactions involving Trp might be of high relevance to the proteins. Secondary structure analysis reveals that cation-π interactions are formed preferably between residues in which at least one is in β-strand. Proteins having β-strand regions have the highest number of cation-π interaction-forming residues.

Key words

cation-π secondary structure long-range interactions accessible surface area stabilization centers immunoglobulin proteins structural stability 

Abbreviations

ASA

accessible surface area

LRO

long-range order

SC

stabilizing centers

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2010_9263_MOESM1_ESM.pdf (381 kb)
Supplementary material, approximately 381 KB.

References

  1. 1.
    Gromiha, M. M., Thomas, S., and Santhosh, C. (2002) Prep. Biochem. Biotech., 32, 355–362.CrossRefGoogle Scholar
  2. 2.
    Chakravarty, S., and Varadarajan, R. (2000) Biochemistry, 41, 8152–8161.CrossRefGoogle Scholar
  3. 3.
    Shi, Z., Olson, C. A., and Kallenbach, N. R. (2002) J. Am. Chem. Soc., 124, 3284–3291.CrossRefPubMedGoogle Scholar
  4. 4.
    Burghardt, T. P., Juranic, N., Macura, S., and Ajtai, K. (2002) Biopolymers, 63, 261–272.CrossRefPubMedGoogle Scholar
  5. 5.
    Mulhern, T. D., Lopez, A. F., D’Andrea, R. J., Gaunt, C., Vandeleur, L., Vadas, M. A., Booker, G. W., and Bagley, C. J. (2000) J. Mol. Biol., 297, 989–1001.CrossRefPubMedGoogle Scholar
  6. 6.
    Gromiha, M. M. (2003) Biophys. Chem., 103, 251–258.CrossRefPubMedGoogle Scholar
  7. 7.
    Harpaz, Y., and Chothia, C. (1994) J. Mol. Biol., 238, 528–539.CrossRefPubMedGoogle Scholar
  8. 8.
    Barclay, A. (2003) Semin. Immunol., 15, 215–223.CrossRefPubMedGoogle Scholar
  9. 9.
    Hunter, C. A., and Sanders, J. K. M. (1990) J. Am. Chem. Soc., 112, 5525–5534.CrossRefGoogle Scholar
  10. 10.
    Dill, K. A. (1990) Biochemistry, 29, 7133–7155.CrossRefPubMedGoogle Scholar
  11. 11.
    Rose, G. D., and Wolfenden, R. (1993) Biophys. Biomol. Struct., 22, 381–415.CrossRefGoogle Scholar
  12. 12.
    Ponnuswamy, P. K., and Gromiha, M. M. (1994) J. Theor. Biol., 166, 63–74.CrossRefGoogle Scholar
  13. 13.
    Pace, C. N. (1995) Meth. Enzymol., 259, 538–554.CrossRefPubMedGoogle Scholar
  14. 14.
    Dosztanyi, Z., Fiser, A., and Simon, I. (1997) J. Mol. Biol., 272, 597–612.CrossRefPubMedGoogle Scholar
  15. 15.
    Gromiha, M. M., and Selvaraj, S. (2001) J. Mol. Biol., 310, 27–32.CrossRefPubMedGoogle Scholar
  16. 16.
    Poupon, A., and Mornon, J. P. (1999) FEBS Lett., 452, 283–289.CrossRefPubMedGoogle Scholar
  17. 17.
    Zacharias, N., and Dougherty, D. A. (2002) Trends Pharmacol. Sci., 23, 281–287.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhong, W., Gallivan, J. P., Zhang, Y., Li, L., Lester, H. A., and Dougherty, D. A. (1998) Proc. Natl. Acad. Sci. USA, 95, 12088–12093.CrossRefPubMedGoogle Scholar
  19. 19.
    Scrutton, N. S., and Raine, A. R. C. (2000) Biochem. J., 319, 1–8.Google Scholar
  20. 20.
    Liu, R., Pidikiti, R., Petersen, C. E., Bhagavan, N. V., and Eckenhoff, R. G. (2002) J. Biol. Chem., 277, 36373–36379.CrossRefPubMedGoogle Scholar
  21. 21.
    Ma, J. C., and Dougherty, D. A. (1997) Chem. Rev., 97, 1303–1324.CrossRefPubMedGoogle Scholar
  22. 22.
    Gromiha, M. M., Santhosh, C., and Suwa, M. (2004) Polymer, 45, 633–639.CrossRefGoogle Scholar
  23. 23.
    Gromiha, M. M. (2005) Polymer, 46, 983–990.CrossRefGoogle Scholar
  24. 24.
    Anand, A., Sudha, A., Lazar Mathew, and Sethumadhavan, R. (2006) Cytokine, 35, 263–269.CrossRefPubMedGoogle Scholar
  25. 25.
    Anand, A., Sudha, A., Lazar Mathew, and Sethumadhavan, R. (2007) Int. J. Biol. Macromol., 40, 479–483.CrossRefPubMedGoogle Scholar
  26. 26.
    Berman, H. M., Westbrook, J., Feng, Z., et al. (2000) Nucleic Acids Res., 28, 235–242.CrossRefPubMedGoogle Scholar
  27. 27.
    Murzin, A. G., and Brenner, S. E., Hubbard, T., and Chothia, C. (1995) J. Mol. Biol., 247, 536–540.PubMedGoogle Scholar
  28. 28.
    Gallivan, J. P., and Dougherty, D. A. (1999) Proc. Natl. Acad. Sci. USA, 96, 9459–9464.CrossRefPubMedGoogle Scholar
  29. 29.
    Jorgensen, W. L., Maxwell, D. S., and Rives, J. T. (1996) J. Am. Chem. Soc., 118, 11225–11236.CrossRefGoogle Scholar
  30. 30.
    Gromiha, M. M., and Selvaraj, S. (2004) Biophys. Mol. Biol., 86, 235–277.CrossRefGoogle Scholar
  31. 31.
    Kabsch, W., and Sander, C. (1983) Biopolymers, 22, 2577–2637.CrossRefPubMedGoogle Scholar
  32. 32.
    Heringa, J., and Argos, P. (1989) Proteins, 37, 30–43.CrossRefGoogle Scholar
  33. 33.
    Dosztanyi, Z. S., Magyar, C. S., Tusnady, E., and Simon, I. (2003) Bioinformatics, 19, 899–900.CrossRefPubMedGoogle Scholar
  34. 34.
    Gromiha, M. M., Pujadas, G., Magyar, C., Selvaraj, S., and Simon, I. (2004) Proteins, 55, 316–329.CrossRefPubMedGoogle Scholar
  35. 35.
    Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor, D., Martz, E., and Ben-Tal, N. (2003) Bioinformatics, 19, 163–164.CrossRefPubMedGoogle Scholar
  36. 36.
    Boeckman, B., Bairoch, A., Apweiler, R., Blatter, M. C., Estreicher, A., Gasteiger, E., Martin, M. J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., and Schneider, M. (2003) Nucleic Acids Res., 31, 365–370.CrossRefGoogle Scholar
  37. 37.
    Gromiha, M. M., Oobatake, M., Kono, H., Uedaira, H., and Sarai, A. (1999) Protein Eng., 12, 549–555.CrossRefPubMedGoogle Scholar
  38. 38.
    Gilis, D., and Rooman, M. (1997) J. Mol. Biol., 272, 276–290.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Bioinformatics Division, School of Biosciences and TechnologyVellore Institute of TechnologyVelloreIndia

Personalised recommendations