Biochemistry (Moscow)

, Volume 75, Issue 7, pp 881–891 | Cite as

Expression of G-protein coupled receptors in Escherichia coli for structural studies

  • L. E. PetrovskayaEmail author
  • A. A. Shulga
  • O. V. Bocharova
  • Ya. S. Ermolyuk
  • E. A. Kryukova
  • V. V. Chupin
  • M. J. J. Blommers
  • A. S. Arseniev
  • M. P. Kirpichnikov


To elaborate a high-performance system for expression of genes of G-protein coupled receptors (GPCR), methods of direct and hybrid expression of 17 GPCR genes in Escherichia coli and selection of strains and bacteria cultivation conditions were investigated. It was established that expression of most of the target GPCR fused with the N-terminal fragment of OmpF or Mistic using media for autoinduction provides high output (up to 50 mg/liter).

Key words

autoinduction expression in E. coli GPCR OmpF Mistic 



G-protein coupled receptors






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rosenbaum, D. M., Rasmussen, S. G., and Kobilka, B. K. (2009) Nature, 459, 356–363.CrossRefPubMedGoogle Scholar
  2. 2.
    Blois, T. M., and Bowie, J. U. (2009) Protein Sci., 18, 1335–1342.CrossRefPubMedGoogle Scholar
  3. 3.
    Kobilka, B., and Schertler, G. F. (2008) Trends Pharmacol. Sci., 29, 79–83.CrossRefPubMedGoogle Scholar
  4. 4.
    Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., and Miyano, M. (2000) Science, 289, 739–745.CrossRefPubMedGoogle Scholar
  5. 5.
    Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G., Thian, F. S., Kobilka, T. S., Choi, H. J., Kuhn, P., Weis, W. I., Kobilka, B. K., and Stevens, R. C. (2007) Science, 318, 1258–1265.CrossRefPubMedGoogle Scholar
  6. 6.
    Rasmussen, S. G., Choi, H. J., Rosenbaum, D. M., Kobilka, T. S., Thian, F. S., Edwards, P. C., Burghammer, M., Ratnala, V. R., Sanishvili, R., Fischetti, R. F., Schertler, G. F., Weis, W. I., and Kobilka, B. K. (2007) Nature, 450, 383–387.CrossRefPubMedGoogle Scholar
  7. 7.
    Warne, T., Serrano-Vega, M. J., Baker, J. G., Moukhametzianov, R., Edwards, P. C., Henderson, R., Leslie, A. G., Tate, C. G., and Schertler, G. F. (2008) Nature, 454, 486–491.CrossRefPubMedGoogle Scholar
  8. 8.
    Jaakola, V. P., Griffith, M. T., Hanson, M. A., Cherezov, V., Chien, E. Y., Lane, J. R., Ijzerman, A. P., and Stevens, R. C. (2008) Science, 322, 1211–1217.CrossRefPubMedGoogle Scholar
  9. 9.
    Mancia, F., and Hendrickson, W. A. (2007) Mol. Biosyst., 3, 723–734.CrossRefPubMedGoogle Scholar
  10. 10.
    Sarramegna, V., Muller, I., Mousseau, G., Froment, C., Monsarrat, B., Milon, A., and Talmont, F. (2005) Protein Expr. Purif., 43, 85–93.CrossRefPubMedGoogle Scholar
  11. 11.
    Lundstrom, K., Wagner, R., Reinhart, C., Desmyter, A., Cherouati, N., Magnin, T., Zeder-Lutz, G., Courtot, M., Prual, C., Andre, N., Hassaine, G., Michel, H., Cambillau, C., and Pattus, F. (2006) J. Struct. Funct. Genomics, 7, 77–91.CrossRefPubMedGoogle Scholar
  12. 12.
    Sambrook, J., and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, N. Y.Google Scholar
  13. 13.
    Studier, F. W. (2005) Protein Expr. Purif., 41, 207–234.CrossRefPubMedGoogle Scholar
  14. 14.
    Laemmli, U. K. (1970) Nature, 227, 680–685.CrossRefPubMedGoogle Scholar
  15. 15.
    Towbin, H., Strahelin, T., and Gordon, J. (1979) Proc. Natl. Acad. Sci. USA, 76, 4350–4354.CrossRefPubMedGoogle Scholar
  16. 16.
    Tian, C., Breyer, R. M., Kim, H. J., Karra, M. D., Friedman, D. B., Karpay, A., and Sanders, R. (2005) J. Am. Chem. Soc., 127, 8010–8011.CrossRefPubMedGoogle Scholar
  17. 17.
    Kiefer, H., Krieger, J., Olszewski, J. D., von Heijne, G., Prestwich, G. D., and Breer, H. (1996) Biochemistry, 35, 16077–16084.CrossRefPubMedGoogle Scholar
  18. 18.
    Baneres, J. L., Mesnier, D., Martin, A., Joubert, L., Dumuis, A., and Bockaert, J. (2005) J. Biol. Chem., 280, 20253–20260.CrossRefPubMedGoogle Scholar
  19. 19.
    Tucker, J., and Grisshammer, R. (1996) Biochem. J., 317, 891–899.PubMedGoogle Scholar
  20. 20.
    Attrill, H., Harding, P. J., Smith, E., Ross, S., and Watts, A. (2009) Protein Expr. Purif., 64, 32–38.CrossRefPubMedGoogle Scholar
  21. 21.
    Baneres, J. L., Martin, A., Hullot, P., Girard, J. P., Rossi, J. C., and Parello, J. (2003) J. Mol. Biol., 329, 801–814.CrossRefPubMedGoogle Scholar
  22. 22.
    Park, S. H., Prytulla, S., de Angelis, A. A., Brown, J. M., Kiefer, H., and Opella, S. J. (2006) J. Am. Chem. Soc., 128, 7402–7403.CrossRefPubMedGoogle Scholar
  23. 23.
    Kirpichnikov, M. P., Goncharuk, M. V., Yermolyuk, Ya. S., Goncharuk, S. A., Shulga, A. A., Maslennikov, I. V., and Arsenyev, A. S. (2005) Tekhnol. Zhivykh Sistem, 2, 20–27.Google Scholar
  24. 24.
    Rath, A., Glibowicka, M., Nadeau, V. G., Chen, G., and Deber, C. M. (2009) Proc. Natl. Acad. Sci. USA, 106, 1760–1765.CrossRefPubMedGoogle Scholar
  25. 25.
    Wagner, S., Baars, L., Ytterberg, A. J., Klussmeier, A., Wagner, C. S., Nord, O., Nygren, P. A., van Wijk, K. J., and de Gier, J. W. (2007) Mol. Cell. Proteomics, 6, 1527–1550.CrossRefPubMedGoogle Scholar
  26. 26.
    Freissmuth, M., Selzer, E., Marullo, S., Schutz, W., and Strosberg, A. D. (1991) Proc. Natl. Acad. Sci. USA, 88, 8548–8552.CrossRefPubMedGoogle Scholar
  27. 27.
    Yeliseev, A. A., Wong, K. K., Soubias, O., and Gawrisch, K. (2005) Protein Sci., 14, 2638–2653.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang, S., Zubay, G., and Goldman, E. (1991) Gene, 105, 61–72.CrossRefPubMedGoogle Scholar
  29. 29.
    Ren, H., Yu, D., Ge, B., Cook, B., Xu, Z., and Zhang, S. (2009) PLoS One, 4, e4509.CrossRefPubMedGoogle Scholar
  30. 30.
    Miroux, B., and Walker, J. E. (1996) J. Mol. Biol., 260, 289–298.CrossRefPubMedGoogle Scholar
  31. 31.
    Seo, S. W., Yang, J., and Jung, G. Y. (2009) Biotechnol. Bioeng., 104, 611–616.CrossRefPubMedGoogle Scholar
  32. 32.
    Smith, D. B., and Johnson, K. S. (1988) Gene, 67, 31–40.CrossRefPubMedGoogle Scholar
  33. 33.
    Jeong, K. J., and Lee, S. Y. (2002) Appl. Environ. Microbiol., 68, 4979–4985.CrossRefPubMedGoogle Scholar
  34. 34.
    Schierle, C. F., Berkmen, M., Huber, D., Kumamoto, C., Boyd, D., and Beckwith, J. (2003) J. Bacteriol., 185, 5706–5713.CrossRefPubMedGoogle Scholar
  35. 35.
    Luo, J., Choulet, J., and Samuelson, J. C. (2009) Protein Sci., 18, 1735–1744.CrossRefPubMedGoogle Scholar
  36. 36.
    Roosild, T. P., Greenwald, J., Vega, M., Castronovo, S., Riek, R., and Choe, S. (2005) Science, 307, 1317–1321.CrossRefPubMedGoogle Scholar
  37. 37.
    Driessen, A. J., and Nouwen, N. (2008) Annu Rev. Biochem., 77, 643–667.CrossRefPubMedGoogle Scholar
  38. 38.
    Von Heijne, G., and Gavel, Y. (1988) Eur. J. Biochem., 174, 671–678.CrossRefGoogle Scholar
  39. 39.
    Opekarova, M., and Tanner, W. (2003) Biochim. Biophys. Acta, 1610, 11–22.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • L. E. Petrovskaya
    • 1
    Email author
  • A. A. Shulga
    • 1
  • O. V. Bocharova
    • 1
  • Ya. S. Ermolyuk
    • 1
  • E. A. Kryukova
    • 1
  • V. V. Chupin
    • 1
  • M. J. J. Blommers
    • 2
  • A. S. Arseniev
    • 1
  • M. P. Kirpichnikov
    • 1
    • 3
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Novartis Institutes for BioMedical ResearchBaselSwitzerland
  3. 3.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations