Biochemistry (Moscow)

, Volume 75, Issue 5, pp 579–584 | Cite as

Electron transfer between exogenous electron donors and reaction center of photosystem 2

  • M. D. MamedovEmail author
  • V. N. Kurashov
  • I. O. Petrova
  • A. A. Zaspa
  • A. Yu. SemenovEmail author


Transfer of electrons between artificial electron donors diphenylcarbazide (DPC) and hydroxylamine (NH2OH) and reaction center of manganese-depleted photosystem 2 (PS2) complexes was studied using the direct electrometrical method. For the first time it was shown that reduction of redox-active amino acid tyrosine Y z · by DPC is coupled with generation of transmembrane electric potential difference (δΨ). The amplitude of this phase comprised ∼17% of that of the δΨ phase due to electron transfer between YZ and the primary quinone acceptor QA. This phase is associated with vectorial intraprotein electron transfer between the DPC binding site on the protein-water interface and the tyrosine Y z · . The slowing of ΔΨ decay in the presence of NH2OH indicates effective electron transfer between the artificial electron donor and reaction center of PS2. It is suggested that NH2OH is able to diffuse through channels with diameter of 2.0–3.0 Å visible in PS2 structure and leading from the protein-water interface to the Mn4Ca cluster binding site with the concomitant electron donation to Y z · . Because the dielectrically-weighted distance between the NH2OH binding site and Y z · is not determined, the transfer of electrons from NH2OH to Y z · could be either electrically silent or contribute negligibly to the observed electrogenicity in comparison with hydrophobic donors.

Key words

reaction center photosystem 2 proteoliposomes photopotential diphenylcarbazide hydroxylamine channels 



(bacterial) reaction center








oxygen-evolving complex


primary electron donor


PS2 preparations depleted of Mn


primary (secondary) plastoquinone electron acceptor




time constant


redox-active tyrosine of D1 polypeptide


electric potential difference


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Renger, G., and Renger, T. (2008) Photosynth. Res., 98, 53–80.CrossRefPubMedGoogle Scholar
  2. 2.
    McEvoy, J. P., and Brudvig, G. W. (2006) Chem. Rev., 106, 4455–4483.CrossRefPubMedGoogle Scholar
  3. 3.
    Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J., and Iwata, S. (2004) Science, 303, 1831–1838.CrossRefPubMedGoogle Scholar
  4. 4.
    Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., and Saenger, W. (2009) Nature, 16, 334–342.Google Scholar
  5. 5.
    Blubaugh, D. J., and Cheniae, G. M. (1990) Biochemistry, 29, 5109–5118.CrossRefPubMedGoogle Scholar
  6. 6.
    Hoganson, C. W., Ghanotakis, D. F., Babcock, G. T., and Yocum, C. F. (1989) Photosynth. Res., 22, 285–293.CrossRefGoogle Scholar
  7. 7.
    Magnuson, A., and Andreasson, L.-E. (1997) Biochemistry, 36, 3254–3261.CrossRefPubMedGoogle Scholar
  8. 8.
    Ono, T., and Mino, H. (1999) Biochemistry, 38, 8778–8785.CrossRefPubMedGoogle Scholar
  9. 9.
    Semin, B. K., and Seibert, M. (2006) J. Phys. Chem., 110, 25532–25542.Google Scholar
  10. 10.
    Kurashov, V. N., Lovyagina, E. R., Shkolnikov, D. Yu., Solntsev, M. K., Mamedov, M. D., and Semin, B. K. (2009) Biochim. Biophys. Acta, 1787, 1492–1498.CrossRefPubMedGoogle Scholar
  11. 11.
    Yerkes, C. F., and Babcock, G. T. (1980) Biochim. Biophys. Acta, 590, 360–372.CrossRefPubMedGoogle Scholar
  12. 12.
    Klimov, V. V., Ananyev, G. M., Allakhverdiyev, S. I., Zharmukhamedov, S. K., Mulay, M., Hedge, U., and Padhye, S. (1990) in Current Research in Photosynthesis (Baltscheffsky, M., ed.) Kluwer Academic Publishers, Dordrecht, pp. 247–254.Google Scholar
  13. 13.
    Allakhverdiev, S. I., Karacan, M. S., Somer, G., Karacan, N., Khan, E. M., Rane, S. Y., Padhye, S., Klimov, V. V., and Renger, G. (1994) Biochemistry, 33, 12210–12214.CrossRefPubMedGoogle Scholar
  14. 14.
    Ananyev, G. M., and Dismukes, G. C. (1996) Biochemistry, 35, 14608–14617.CrossRefPubMedGoogle Scholar
  15. 15.
    Kurashov, V. N., Allakhverdiev, S. I., Zharmukhamedov, S. K., Nagata, T., Klimov, V. V., Semenov, A. Yu., and Mamedov, M. D. (2009) Photochem. Photobiol. Sci., 8, 162–166.CrossRefPubMedGoogle Scholar
  16. 16.
    Chroni, S., and Ghanotakis, D. F. (2001) Biochim. Biophys. Acta, 1504, 432–437.CrossRefPubMedGoogle Scholar
  17. 17.
    Gopta, O. A., Tyunyatkina, A. A., Kurashov, V. N., Semenov, A. Yu., and Mamedov, M. D. (2008) Eur. Biophys. J., 37, 1045–1050.CrossRefPubMedGoogle Scholar
  18. 18.
    Toth, S. Z., Puthur, J. T., Nagy, V., and Garab, G. (2009) Plant Physiol., 149, 1568–1578.CrossRefPubMedGoogle Scholar
  19. 19.
    Drachev, L. A., Kaminskaya, O. P., Konstantinov, A. A., Semenov, A. Yu., and Skulachev, V. P. (1985) FEBS Lett., 189, 45–49.CrossRefGoogle Scholar
  20. 20.
    Drachev, L. A., Kaminskaya, O. P., Konstantinov, A. A., Kotova, E. A., Mamedov, M. D., Samuilov, V. D., Semenov, A. Yu., and Skulachev, V. P. (1986) Biochim. Biophys. Acta, 848, 137–146.CrossRefGoogle Scholar
  21. 21.
    Gourovskaya, K. N., Mamedov, M. D., Vassiliev, I. R., Golbeck, J. H., and Semenov, A. Y. (1997) FEBS Lett., 414, 193–196.CrossRefPubMedGoogle Scholar
  22. 22.
    Mamedov, M. D., Mamedova, A. A., Chamorovsky, S. K., and Semenov, A. Yu. (2001) FEBS Lett., 500, 172–176.CrossRefPubMedGoogle Scholar
  23. 23.
    Semenov, A. Yu., Cherepanov, D. A., and Mamedov, M. D. (2008) Photosynth. Res., 98, 121–130.CrossRefPubMedGoogle Scholar
  24. 24.
    Berthold, D. A., Babcock, G. T., and Yocum, C. F. (1981) FEBS Lett., 134, 231–234.CrossRefGoogle Scholar
  25. 25.
    Ghanotakis, D. F., Demetriou, D. M., and Yocum, C. F. (1987) Biochim. Biophys. Acta, 891, 15–21.CrossRefGoogle Scholar
  26. 26.
    Mamedov, M. D., Beshta, O. E., Gurovskaya, K. N., Mamedova, A. A., Neverov, K. D., Samuilov, V. D., and Semenov, A. Yu. (1999) Biochemistry (Moscow), 64, 504–509.Google Scholar
  27. 27.
    Semenov, A. Yu., Mamedov, M. D., and Chamorovsky, S. K. (2006) in Advances in Photosynthesis and Respiration Series. Photosystem I: the Light-Driven, Plastocyanin:Ferredoxin Oxidoreductase (Golbeck, J. H., ed.) Springer, pp. 319–424.Google Scholar
  28. 28.
    Kalaidzidis, Ya. L., Gavrilov, A. V., Zaitsev, P. V., Kalaidzidis, A. L., and Korolev, E. V. (1997) Progr. Comp. Soft., 23, 206–212.Google Scholar
  29. 29.
    Haumann, M., Mulkidjanian, A., and Junge, W. (1997) Biochemistry, 36, 9304–9315.CrossRefPubMedGoogle Scholar
  30. 30.
    Maroti, P., and Wraight, C. A. (1997) Biophys. J., 73, 367–381.CrossRefPubMedGoogle Scholar
  31. 31.
    Foster, V., and Junge, W. (1986) Photosynth. Res., 9, 197–210.CrossRefGoogle Scholar
  32. 32.
    Noring, B., Shevela, D., Renger, G., and Messinger, J. (2008) Photosynth. Res., 98, 251–260.CrossRefPubMedGoogle Scholar
  33. 33.
    Ho, F. M., and Styring, S. (2008) Biochim. Biophys. Acta, 1777, 140–153.CrossRefPubMedGoogle Scholar
  34. 34.
    Murray, J. W., and Barber, J. (2007) J. Struct. Biol., 159, 228–238.CrossRefPubMedGoogle Scholar
  35. 35.
    Medek, P., Benes, P., and Sochor, J. (2008) J. WSCG, 1, 107–114.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations