Advertisement

Biochemistry (Moscow)

, Volume 75, Issue 3, pp 367–374 | Cite as

Methyl cyanide induces α to β transition and aggregation at high concentrations in E-state of human serum albumin

  • P. Sen
  • M. A. Iqbal
  • S. Fatima
  • R. H. KhanEmail author
Article

Abstract

We have studied the effect of 2,2,2-trifluoroethanol (TFE), an α-helix inducer, versus methyl cyanide (MeCN), a β-sheet inducer, on acid-denatured human serum albumin (HSA) using far-UV circular dichroism, intrinsic fluorescence, 1-anilino-8-naphthalene sulfonate binding, and acrylamide quenching studies. Interestingly, at pH 2.0, where the recovery and resolution of the protein in reverse phase chromatography is high, its secondary structure remains unchanged even in the presence of very high concentration (76% v/v) of MeCN. Gain of 23 and 34% α-helicity was observed in the presence of 20 and 50% TFE, respectively. At pH 7.3, HSA aggregates in the presence of 40% MeCN, but it remains soluble up to 75% MeCN at pH 2.0. The results seem to be important for HSA isolation and purification.

Key words

acrylamide quenching aggregation circular dichroism E-state human serum albumin 

Abbreviations

ANS

1-anilino-8-naphthalene sulfonic acid

GuHCl

guanidine hydrochloride

HSA

human serum albumin

MeCN

methyl cyanide (or acetonitrile)

MRE

mean residue ellipticity

RFI

relative fluorescence intensity

RPC

reverse phase chromatography

TFE

2,2,2-trifluoroethanol

UV-CD

ultraviolet circular dichroism

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anfinsen, C. B. (1973) Science, 181, 223–230.CrossRefPubMedGoogle Scholar
  2. 2.
    Haq, S. K., Rasheedi, S., Sharma, P., Ahmad, B., and Khan, R. H. (2005) Int. J. Biochem. Cell Biol., 37, 361–374.CrossRefPubMedGoogle Scholar
  3. 3.
    Bohidar, H. B., and Mohanty, B. (2004) Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 69, 021902.PubMedGoogle Scholar
  4. 4.
    Peters, T., Jr. (1996) in All About Albumin: Biochemistry, Genetics, and Medical Applications, Academic Press, N. Y., pp. 251–284.Google Scholar
  5. 5.
    Peters, T., Jr. (1996) in All About Albumin: Biochemistry, Genetics, and Medical Applications, Academic Press, N. Y., pp. 9–54.Google Scholar
  6. 6.
    Muzammil, S., Kumar, Y., and Tayyab, S. (1999) Eur. J. Biochem., 266, 26–32.CrossRefPubMedGoogle Scholar
  7. 7.
    Khan, F., Khan, R. H., and Muzammil, S. (2000) Biochim. Biophys. Acta, 1481, 229–236.PubMedGoogle Scholar
  8. 8.
    Buck, M., Radford, S. E., and Dobson, C. M. (1993) Biochemistry, 32, 669–678.CrossRefPubMedGoogle Scholar
  9. 9.
    Fan, P., Bracken, C., and Baum, J. (1993) Biochemistry, 32, 1573–1582.CrossRefPubMedGoogle Scholar
  10. 10.
    Kandori, K., Uoya, Y., and Ishikawa, T. (2002) J. Colloid Interface Sci., 252, 269–275.CrossRefPubMedGoogle Scholar
  11. 11.
    Gekko, K., Ohmae, E., Kameyama, K., and Takagi, T. (1998) Biochim. Biophys. Acta, 1387, 195–205.PubMedGoogle Scholar
  12. 12.
    Kumar, Y., Muzammil, S., and Tayyab, S. (2005) J. Biochem., 138, 335–341.CrossRefPubMedGoogle Scholar
  13. 13.
    Andrade, M. A., Chacon, P., Merelo, J. J., and Moran, F. (1993) Protein Eng., 6, 383–390.CrossRefPubMedGoogle Scholar
  14. 14.
    Eftink, M. R., and Ghiron, C. A. (1976) Biochemistry, 15, 672–680.CrossRefPubMedGoogle Scholar
  15. 15.
    Naeem, A., Khan, K. A., and Khan, R. H. (2004) Arch. Biochem. Biophys., 432, 79–87.PubMedGoogle Scholar
  16. 16.
    Ahmad, B., Khan, M. K. A., Haq, S. K., and Khan, R. H. (2004) Biochem. Biophys. Res. Commun., 314, 166–173.CrossRefPubMedGoogle Scholar
  17. 17.
    Rasheed, Z., Khan, M. W., and Ali, R. (2006) Autoimmunity, 39, 479–488.CrossRefPubMedGoogle Scholar
  18. 18.
    Kundu, S., Sundd, M., and Jagannadham, M. V. (2002) J. Biochem. Mol. Biol., 35, 155–164.PubMedGoogle Scholar
  19. 19.
    Matulis, D., Baumann, C. G., Bloomfield, V. A., and Lovrien, R. E. (1999) Biopolymers, 49, 451–458.CrossRefPubMedGoogle Scholar
  20. 20.
    Ahmad, B., Ankita, and Khan, R. H. (2005) Arch. Biochem. Biophys., 437, 159–167.CrossRefPubMedGoogle Scholar
  21. 21.
    Bhakuni, V. (1998) Arch. Biochem. Biophys., 357, 274–284.CrossRefPubMedGoogle Scholar
  22. 22.
    He, X. M., and Carter, D. C. (1992) Nature, 358, 209–215.CrossRefPubMedGoogle Scholar
  23. 23.
    Manavalan, P., and Johnson, W. C. (1983) Nature, 305, 831–832.CrossRefGoogle Scholar
  24. 24.
    Pittz, E. P., and Timasheff, S. N. (1978) Biochemistry, 17, 615–623.CrossRefPubMedGoogle Scholar
  25. 25.
    Dobson, C. M. (2003) Nature, 426, 884–890.CrossRefPubMedGoogle Scholar
  26. 26.
    Ohnishi, S., and Takano, K. (2004) Cell Mol. Life Sci., 61, 511–524.CrossRefPubMedGoogle Scholar
  27. 27.
    Srisailam, S., Kumar, T. K., Srimathi, T., and Yu, C. (2002) J. Am. Chem. Soc., 124, 1884–1888.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Interdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia

Personalised recommendations