Biochemistry (Moscow)

, Volume 75, Issue 3, pp 342–352 | Cite as

Peculiarities of cyanide binding to the ba 3-type cytochrome oxidase from the thermophilic bacterium Thermus thermophilus

  • A. V. Kalinovich
  • N. V. Azarkina
  • T. V. Vygodina
  • T. Soulimane
  • A. A. KonstantinovEmail author


Cytochrome c oxidase of the ba 3-type from Thermus thermophilus does not interact with cyanide in the oxidized state and acquires the ability to bind heme iron ligands only upon reduction. Cyanide complexes of the reduced heme a 3 in cytochrome ba 3 and in mitochondrial aa 3-type cytochrome oxidase are similar spectroscopically, but the a 3 2+ -CN complex of cytochrome ba 3 is strikingly tight. Experiments have shown that the K d value of the cytochrome ba 3 complex with cyanide in the presence of reductants of the enzyme binuclear center does not exceed 10−8 M, which is four to five orders of magnitude less than the K d of the cyanide complex of the reduced heme a 3 of mitochondrial cytochrome oxidase. The tightness of the cytochrome ba 3 complex with cyanide is mainly associated with an extremely slow rate of the ligand dissociation (k off ≤ 10−7 sec−1), while the rate of binding (k on ∼ 102 M−1·sec−1) is similar to the rate observed for the mitochondrial cytochrome oxidase. It is proposed that cyanide dissociation from the cytochrome ba 3 binuclear center might be hindered sterically by the presence of the second ligand molecule in the coordination sphere of Cu B 2+ . The rate of cyanide binding with the reduced heme a 3 does not depend on pH in the neutral area, but it approaches linear dependence on H+ activity in the alkaline region. Cyanide binding appears to be controlled by protonation of an enzyme group with pK a = 8.75.

Key words

cytochrome oxidase ba3 cyanide hemoproteins oxygen reducing center Thermus thermophilus 





dodecyl maltoside


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferguson-Miller, S., and Babcock, G. T. (1996) Chem. Rev., 7, 2889–2907.CrossRefGoogle Scholar
  2. 2.
    Abramson, J., Riistama, S., Larsson, G., Jasaitis, A., Svensson-Ek, M., Laakkonen, L., Puuustinen, A., Iwata, S., and Wikstrom, M. (2000) Nat. Struct. Biol., 7, 910–917.CrossRefPubMedGoogle Scholar
  3. 3.
    Abramson, J., Svensson-Ek, M., Byrne, B., and Iwata, S. (2001) Biochim. Biophys. Acta, 1544, 1–9.PubMedGoogle Scholar
  4. 4.
    Liberman, E. A. (1977) Biofizika, 22, 1115–1128.PubMedGoogle Scholar
  5. 5.
    Konstantinov, A. A. (1977) Dokl. Akad. Nauk SSSR, 237, 713–716.PubMedGoogle Scholar
  6. 6.
    Artzatbanov, V. Y., Konstantinov, A. A., and Skulachev, V. P. (1978) FEBS Lett., 87, 180–185.CrossRefPubMedGoogle Scholar
  7. 7.
    Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H. (1995) Nature, 376, 660–669.CrossRefPubMedGoogle Scholar
  8. 8.
    Tsukihara, T., Aoyama, H., Yamashita, E. I., Takashi, T., Yamaguichi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S. (1996) Science, 272, 1136–1144.CrossRefPubMedGoogle Scholar
  9. 9.
    Soulimane, T., Buse, G., Bourenkov, G. P., Bartunik, H. D., Huber, R., and Than, M. E. (2000) EMBO J., 19, 1766–1776.CrossRefPubMedGoogle Scholar
  10. 10.
    Pereira, M. M., Santana, M., and Teixeira, M. (2001) Biochim. Biophys. Acta, 1505, 185–208.CrossRefPubMedGoogle Scholar
  11. 11.
    Pereira, M. M., Gomes, C. M., and Teixeira, M. (2002) FEBS Lett., 522, 14–18.CrossRefPubMedGoogle Scholar
  12. 12.
    Pereira, M. M., and Teixeira, M. (2004) Biochim. Biophys. Acta, 1655, 340–346.CrossRefPubMedGoogle Scholar
  13. 13.
    Svensson-Ek, M., Abramson, J., Larsson, G., Tornroth, S., Brzezinski, P., and Iwata, S. (2002) J. Mol. Biol., 321, 329–339.CrossRefPubMedGoogle Scholar
  14. 14.
    Hunsicker-Wang, L. M., Pacoma, R. L., Chen, Y., Fee, J. A., and Stout, C. D. (2005) Acta Cryst., D61, 340–343.Google Scholar
  15. 15.
    Liu, B., Chen, Y., Doukov, T., Soltis, S. M., Stout, C. D., and Fee, J. A. (2009) Biochemistry, 48, 820–826.CrossRefPubMedGoogle Scholar
  16. 16.
    Sousa, F. L., Verissimo, A. F., Baptista, A. M., Soulimane, T., Teixeira, M., and Pereira, M. M. (2008) Biophys. J., 94, 2434–2441.CrossRefPubMedGoogle Scholar
  17. 17.
    Nicholls, P., and Soulimane, T. (2004) Biochim. Biophys. Acta, 1655, 381–387.CrossRefPubMedGoogle Scholar
  18. 18.
    Siletskiy, S., Soulimane, T., Azarkina, N., Vygodina, T. V., Buse, G., Kaulen, A., and Konstantinov, A. (1999) FEBS Lett., 457, 98–102.CrossRefPubMedGoogle Scholar
  19. 19.
    Fowler, L. R., Richardson, S. H., and Hatefi, Y. (1962) Biochim. Biophys. Acta, 64, 170–173.CrossRefPubMedGoogle Scholar
  20. 20.
    Giuffre, A., Forte, E., Antonini, G., D’Itri, E., Brunori, M., Soulimane, T., and Buse, G. (1999) Biochemistry, 38, 1057–1065.CrossRefPubMedGoogle Scholar
  21. 21.
    Nicholls, P., Petersen, L. C., Miller, M., and Hansen, F. B. (1976) Biochim. Biophys. Acta, 449, 188–196.CrossRefPubMedGoogle Scholar
  22. 22.
    Farver, O., Chen, Y., Fee, J. A., and Pecht, I. (2006) FEBS Lett., 580, 3417–3421.CrossRefPubMedGoogle Scholar
  23. 23.
    Tofani, L., Feis, A., Snoke, R. E., Berti, D., Baglioni, P., and Smulevich, G. (2004) Biophys. J., 87, 1186–1195.CrossRefPubMedGoogle Scholar
  24. 24.
    Hill, B. C., and Marmor, S. (1991) Biochem. J., 279, 355–360.PubMedGoogle Scholar
  25. 25.
    Antonini, E., Brunori, M., Greenwood, C., Malmstrom, B. G., and Rotilio, G. C. (1971) Eur. J. Biochem., 23, 396–400.CrossRefPubMedGoogle Scholar
  26. 26.
    Van Buuren, K. J., Nicholis, P., and van Gelder, B. F. (1972) Biochim. Biophys. Acta, 256, 258–276.CrossRefPubMedGoogle Scholar
  27. 27.
    Clark, W. M. (1960) Oxidation-Reduction Potentials of Organic Systems, Williams and Wilkins, Baltimore, MD.Google Scholar
  28. 28.
    Nikol’skii, B. P. (1964) Handbook of Chemistry [in Russian], Khimiya, Moscow.Google Scholar
  29. 29.
    Andreev, I. M., Myakotina, O. L., Popova, E. Y., and Konstantinov, A. A. (1983) Biokhimiya, 48, 219–223.Google Scholar
  30. 30.
    Ver Ploeg, D. A., and Alberty, R. A. (1968) J. Biol. Chem., 243, 435–440.Google Scholar
  31. 31.
    Shiro, Y., Iwata, T., Makino, R., Fujii, M., Isogai, Y., and Iizuka, T. (1993) J. Biol. Chem., 268, 19983–19990.PubMedGoogle Scholar
  32. 32.
    Bolli, A., Ciaccio, C., Coletta, M., Nardini, M., Bolognesi, M., Pesce, A., Guertin, M., Visca, P., and Ascenzi, P. (2008) FEBS J., 275, 633–645.CrossRefPubMedGoogle Scholar
  33. 33.
    Kim, Y., Babcock, G. T., Surerus, K. K., Fee, J. A., Dyer, B., Woodruff, W., and Oertling, A. (1998) Biospectroscopy, 4, 1–15.CrossRefPubMedGoogle Scholar
  34. 34.
    Yoshikawa, S., and Caughey, W. S. (1990) J. Biol. Chem., 265, 7945–7958.PubMedGoogle Scholar
  35. 35.
    Yoshikawa, S., Shinzawa-Itoh, K., and Tsukihara, T. (2000) J. Inorg. Biochem., 82, 1–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Qin, L., Liu, J., Mills, D. A., Proshlyakov, D. A., Hiser, C., and Ferguson-Miller, S. (2009) Biochemistry, 48, 5121–5130.CrossRefPubMedGoogle Scholar
  37. 37.
    Surerus, K. K., Oertling, W. A., Fan, C., Gurbiel, R. J., Einarsdottir, O., Antholine, W. E., Dyer, R. B., Hoffman, B. M., Woodruff, W. H., and Fee, J. A. (1992) Proc. Natl. Acad. Sci. USA, 89, 3195–3199.CrossRefPubMedGoogle Scholar
  38. 38.
    Oertling, W. A., Surerus, K. K., Einarsdyttir, O., Fee, J. A., Dyer, R. B., and Woodruff, W. H. (1994) Biochemistry, 33, 3128–3141.CrossRefPubMedGoogle Scholar
  39. 39.
    Wilson, D. F., Erecinska, M., and Brocklehurst, E. S. (1972) Arch. Biochem. Biophys., 151, 180–187.CrossRefPubMedGoogle Scholar
  40. 40.
    Andreev, I. M., Artzatbanov, V. Y., Konstantinov, A. A., and Skulachev, V. P. (1979) Dokl. Akad. Nauk SSSR, 244, 1013–1017.PubMedGoogle Scholar
  41. 41.
    Andreev, I. M., and Konstantinov, A. A. (1983) Bioorg. Chem. (Moscow), 9, 216–227.Google Scholar
  42. 42.
    Konstantinov, A. A., Vygodina, T. V., and Andreev, I. M. (1986) FEBS Lett., 202, 229–234.CrossRefPubMedGoogle Scholar
  43. 43.
    Jones, M. G., Bickar, D., Wilson, M. T., Brunori, M., Colisimo, A., and Sarti, P. (1984) Biochem. J., 220, 57–66.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. V. Kalinovich
    • 1
  • N. V. Azarkina
    • 1
  • T. V. Vygodina
    • 1
  • T. Soulimane
    • 2
  • A. A. Konstantinov
    • 1
    Email author
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State University119992Russia
  2. 2.Materials and Surface Science InstituteUniversity of LimerickLimerickIreland

Personalised recommendations