Advertisement

Biochemistry (Moscow)

, Volume 75, Issue 3, pp 310–319 | Cite as

Solid-phase assays for study of carbohydrate specificity of galectins

  • E. M. Rapoport
  • T. V. Pochechueva
  • O. V. Kurmyshkina
  • G. V. Pazynina
  • V. V. Severov
  • E. A. Gordeeva
  • I. M. Belyanchikov
  • S. Andre
  • H. -J. Gabius
  • N. V. BovinEmail author
Article

Abstract

We have recently shown that the carbohydrate-binding pattern of galectins in cells differs from that determined in artificial (non-cellular) test-systems. To understand the observed discrepancy, we compared several test-systems differing in the mode of galectin presentation on solid phase. The most representative system was an assay where the binding of galectin (human galectins-1 and -3 were studied) to asialofetuin immobilized on solid phase was inhibited by polyacrylamide glycoconjugates, Glyc-PAA. This approach permits us to range quantitatively glycans (Glyc) by their affinity to galectin, i.e. to study both high and low affinity ligands. Our attempts to imitate the cell system by solid-phase assay were not successful. In the cell system galectin binds glycoconjugates by one carbohydrate-recognizing domain (CRD), and after that the binding to the remaining non-bound CRD is studied by means of fluorescein-labeled Glyc-PAA. In an “imitation” variant when galectins are loaded on adsorbed asialofetuin or Glyc-PAA followed by revealing of binding by the second Glyc-PAA, the interaction was not observed or glycans were ordered poorly, unlike in the inhibitory assay. When galectins were adsorbed on corresponding antibodies (when all CRDs were free for recognition by carbohydrate), a good concentration dependence was observed and patterns of specificities were similar (though not identical) for the two methods; notably, this system does not reflect the situation in the cell. Besides the above-mentioned, other variants of solid-phase analysis of galectin specificity were tested. The results elucidate the mechanism and consequence of galectin CRD cis-masking on cell surface.

Key words

galectins glycoconjugates masking solid-phase assay oligosaccharides carbohydrate specificity 

Abbreviations

AP

alkaline phosphatase

ASF

asialofetuin

BSA

bovine serum albumin

Glyc-PAA

polyacrylamide glycoconjugate

PBA

PBS containing 0.3% BSA, pH 7.2

PBS

phosphate buffered saline, pH 7.2

PBS-Tw

PBS containing 0.1% Tween-20

PO

horseradish peroxidase

Str

streptavidin

TBA

TBS containing 0.2% BSA

TBS

buffer containing 50 mM Tris-HCl and 150 mM NaCl, pH 7.5

TBS-Tw

TBS containing 0.25% Tween-20

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barondes, S. H., Cooper, D. N., Gitt, M. A., and Leffler, H. (1994) J. Biol. Chem., 269, 20807–20810.PubMedGoogle Scholar
  2. 2.
    Leffler, H., Carlsson, S., Hedlund, M., Qian, Y., and Poirier, F. (2004) Glycoconj. J., 19, 433–440.CrossRefPubMedGoogle Scholar
  3. 3.
    Cooper, D. N. W., and Barondes, S. H. (1999) Glycobiology, 9, 979–984.CrossRefPubMedGoogle Scholar
  4. 4.
    Liu, F. T., and Rabinovich, G. A. (2005) Nat. Rev. Cancer, 5, 29–41.CrossRefPubMedGoogle Scholar
  5. 5.
    Rabinovich, G. A., Toscano, M. A., Jackson, S. S., and Vasta, G. R. (2007) Curr. Opin. Struct. Biol., 17, 513–520.CrossRefPubMedGoogle Scholar
  6. 6.
    Elola, M. T., Chiesa, M. E., Alberti, A. F., Mordoh, J., and Fink, N. E. (2005) J. Biomed. Sci., 12, 13–29.CrossRefPubMedGoogle Scholar
  7. 7.
    Krzeslac, A., and Lipinska, A. (2004) Cell Mol. Biol. Lett., 9, 305–328.Google Scholar
  8. 8.
    Teichberg, V. I., Siliman, I., Beitsch, D. D., and Resheff, G. A. (1975) Proc. Natl. Acad. Sci. USA, 72, 1383–1387.CrossRefPubMedGoogle Scholar
  9. 9.
  10. 10.
    Blixt, O., Head, S., Mondala, T., Scanlan, Ch., Huflejt, M. E., Alvarez, R., Bryan, M. C., Fazio, F., Calarese, D., Stevens, J., Razi, N., Stevens, D. J., Skehel, J. J., van Die, I., Burton, D. R., Wilson, I. A., Cummings, R., Bovin, N., Wong, Ch.-Hu, and Paulson, J. C. (2004) Proc. Natl. Acad. Sci. USA, 101, 17033–17038.CrossRefPubMedGoogle Scholar
  11. 11.
    Stowell, S. R., Arthur, C. M., Mehta, P., Slanina, K. A., Blixt, O., Leffler, H., Smith, D. F., and Cummings, R. D. (2008) J. Biol. Chem., 283, 10109–10123.CrossRefPubMedGoogle Scholar
  12. 12.
    Lepanen, A., Stowell, S., Blixt, O., and Cummings, R. D. (2005) J. Biol. Chem., 280, 5549–5562.CrossRefGoogle Scholar
  13. 13.
    Stowell, S. R., Dias-Baruffi, M., Penttila, L., Renkonen, O., Nyame, A. K., Cummings, R. D. (2004) Glycobiology, 14, 157–167.CrossRefPubMedGoogle Scholar
  14. 14.
    Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., Urashima, T., Oka, T., Futai, M., Muller, W. E. G., Yagi, F., and Kasai, K.-I. (2002) Biochim. Biophys. Acta, 1572, 232–254.PubMedGoogle Scholar
  15. 15.
    Sorme, P., Kahl-Knutsson, B., Hufleijt, M., Nilsson, U. J., and Leffler, H. (2004) Anal. Biochem., 334, 36–47.CrossRefPubMedGoogle Scholar
  16. 16.
    Cederfur, C., Salomonsson, E., Nilsson, J., Halim, A., Oberg, C. T., Larson, G., Nilsson, U. J., Leffler, H. (2008) Glycobiology, 18, 384–394.CrossRefPubMedGoogle Scholar
  17. 17.
    Rapoport, E. M., Andre, S., Kurmyshkina, O. V., Pochechueva, T. V., Severov, V. V., Pazynina, G. V., Gabius, H.-J., Bovin, N. V. (2008) Glycobiology, 18, 315–324.CrossRefPubMedGoogle Scholar
  18. 18.
    Bovin, N. V., Korchagina, E. Yu., Zemlyanukhina, T. V., Byramova, N. E., Galanina, O. E., Zemlyakov, A. E., Ivanov, A. E., Zubov, V. P., and Mochalova, L. V. (1993) Glycoconj. J., 10, 142–151.CrossRefPubMedGoogle Scholar
  19. 19.
    Andre, S., Kaltner, H., Furuike, T., Nishimura, S., and Gabius, H.-J. (2004) Bioconj. Chem., 15, 87–98.CrossRefGoogle Scholar
  20. 20.
    Kopitz, J., Andre, S., von Reitzenstein, C., Versluis, K., Kaltner, H., Pieters, R. J., Wasano, K., Kuwabara, I., Liu, F.-T., Cantz, M., Heck, A. J. R., and Gabius, H.-J. (2003) Oncogene, 22, 6277–6288.CrossRefPubMedGoogle Scholar
  21. 21.
    Matrosovich, M. N., Gao, P., and Kawaoka, Y. (1998) J. Virol., 72, 6373–6380.PubMedGoogle Scholar
  22. 22.
    Collins, B. E., Blixt, O., Han, S., Duong, B., Li, H., Nathan, J. K., Bovin, N. V., and Paulson, J. C. (2006) J. Immunol., 177, 2994–3003.PubMedGoogle Scholar
  23. 23.
    Lopez-Lucendo, M. F., Solis, D., Andre, S., Hirabayashi, J., Kasai, K.-I., Kaltner, H., Gabius, H.-J., and Romero, A. (2004) J. Mol. Biol., 343, 957–970.CrossRefPubMedGoogle Scholar
  24. 24.
    Ahmad, N., Gabius, H.-J., Andre, S., Kaltner, H., Sabesan, S., Roy, R., Liu, B., Macaluso, F., and Brewer, C. F. (2004) J. Biol. Chem., 279, 10841–10847.CrossRefPubMedGoogle Scholar
  25. 25.
    Wu, A. M., Singh, T., Wu, J. H., Lensch, M., Andre, S., Gabius, H.-J. (2006) Glycobiology, 16, 524–537.CrossRefPubMedGoogle Scholar
  26. 26.
    Allen, H. J., Ahmed, H., and Matta, K. L. (1998) Glycoconj. J., 15, 691–695.CrossRefPubMedGoogle Scholar
  27. 27.
    Bovin, N. V. (1996) Bioorg. Khim., 22, 643–663.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • E. M. Rapoport
    • 1
  • T. V. Pochechueva
    • 1
  • O. V. Kurmyshkina
    • 1
  • G. V. Pazynina
    • 1
  • V. V. Severov
    • 1
  • E. A. Gordeeva
    • 1
  • I. M. Belyanchikov
    • 1
  • S. Andre
    • 2
  • H. -J. Gabius
    • 2
  • N. V. Bovin
    • 1
    Email author
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Physiological Chemistry, Faculty of Veterinary MedicineLudwig-Maximilians-UniversityMunichGermany

Personalised recommendations