Biochemistry (Moscow)

, Volume 75, Issue 2, pp 257–263 | Cite as

Programmed cell death in plants: Protective effect of phenolic compounds against chitosan and H2O2

  • V. D. SamuilovEmail author
  • L. A. Vasil’ev
  • E. V. Dzyubinskaya
  • D. B. Kiselevsky
  • A. V. Nesov


Addition of chitosan or H2O2 caused destruction of nuclei of epidermal cells (EC) in the epidermis isolated from pea leaves. Phenol, a substrate of the apoplastic peroxidase-oxidase, in concentrations of 10−10–10−6 M prevented the destructive effect of chitosan. Phenolic compounds 2,4-dichlorophenol, catechol, and salicylic acid, phenolic uncouplers of oxidative phosphorylation pentachlorophenol and 2,4-dinitrophenol, and a non-phenolic uncoupler carbonyl cyanide m-chlorophenylhydrazone, but not tyrosine or guaiacol, displayed similar protective effects. A further increase in concentrations of the phenolic compounds abolished their protective effects against chitosan. Malate, a substrate of the apoplastic malate dehydrogenase, replenished the pool of apoplastic NADH that is a substrate of peroxidase-oxidase, prevented the chitosan-induced destruction of the EC nuclei, and removed the deleterious effect of the increased concentration of phenol (0.1 mM). Methylene Blue, benzoquinone, and N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) capable of supporting the optimal catalytic action of peroxidase-oxidase cancelled the destructive effect of chitosan on the EC nuclei. The NADH-oxidizing combination of TMPD with ferricyanide promoted the chitosan-induced destruction of the nuclei. The data suggest that the apoplastic peroxidase-oxidase is involved in the antioxidant protection of EC against chitosan and H2O2.

Key words

apoplastic peroxidase programmed cell death chitosan hydrogen peroxide phenolic compounds protective action plants epidermal cells 





carbonyl cyanide m-chlorophenylhydrazone






epidermal cells


potassium ferricyanide


Methylene Blue




reactive oxygen species


salicylic acid




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hatfield, R., and Vermerris, V. (2001) Plant Physiol., 126, 1351–1357.CrossRefPubMedGoogle Scholar
  2. 2.
    Yamazaki, I., and Yokota, K. (1973) Mol. Cell Biochem., 2, 39–52.CrossRefPubMedGoogle Scholar
  3. 3.
    Yokota, K., and Yamazaki, I. (1977) Biochemistry, 16, 1913–1920.CrossRefPubMedGoogle Scholar
  4. 4.
    Halliwell, B. (1978) Planta, 140, 81–88.CrossRefGoogle Scholar
  5. 5.
    Hauser, M. J. B., and Olsen, L. F. (1998) Biochemistry, 37, 2458–2469.CrossRefPubMedGoogle Scholar
  6. 6.
    Bronnikova, T. V., Fed’kina, V. R., Schaffer, W. M., and Olsen, L. F. (1995) J. Phys. Chem., 99, 9309–9312.CrossRefGoogle Scholar
  7. 7.
    Elstner, E. F., and Heupel, A. (1976) Planta, 130, 175–180.CrossRefGoogle Scholar
  8. 8.
    Gross, G. G., Janse, C., and Elstner, E. F. (1977) Planta, 136, 271–276.CrossRefGoogle Scholar
  9. 9.
    Mader, M., and Fussl, R. (1982) Plant Physiol., 70, 1132–1134.CrossRefPubMedGoogle Scholar
  10. 10.
    Van Kirk, C. A., and Raschke, K. (1978) Plant Physiol., 61, 474–575.CrossRefPubMedGoogle Scholar
  11. 11.
    Hedrich, R., Marten, I., Lohse, G., Dietrich, P., Winter, H., Lohaus, G., and Heldt, H.-W. (1994) Plant J., 6, 741–748.CrossRefGoogle Scholar
  12. 12.
    Lee, M., Choi, Y., Burla, B., Kim, Y.-Y., Jeon, B., Maeshima, M., Yoo, J.-Y., Martinoia, E., and Lee, Y. (2008) Nature Cell Biol., 10, 1217–1223.CrossRefPubMedGoogle Scholar
  13. 13.
    Olsen, L. F., Hauser, M. J. B., and Kummer, U. (2003) Eur. J. Biochem., 270, 2796–2804.CrossRefPubMedGoogle Scholar
  14. 14.
    Allan, A. C., and Fluhr, R. (1997) Plant Cell, 9, 1559–1572.CrossRefPubMedGoogle Scholar
  15. 15.
    Vasil’ev, L. A., Dzyubinskaya, E. V., Zinovkin, R. A., Kiselevsky, D. B., Lobysheva, N. V., and Samuilov, V. D. (2009) Biochemistry (Moscow), 74, 1035–1043.CrossRefGoogle Scholar
  16. 16.
    Lambeth, J. D. (2004) Nature Rev. Immunol., 4, 181–189.CrossRefGoogle Scholar
  17. 17.
    Cross, A. R., and Segal, A. W. (2004) Biochim. Biophys. Acta, 1657, 1–22.PubMedGoogle Scholar
  18. 18.
    Nauseef, W. M. (2008) J. Biol. Chem., 283, 16961–16965.CrossRefPubMedGoogle Scholar
  19. 19.
    Papadakis, A. K., and Roubelakis-Angelakis, K. A. (1999) Plant Physiol., 121, 197–205.CrossRefPubMedGoogle Scholar
  20. 20.
    Skulachev, V. P. (1969) Energy Accumulation in the Cell [in Russian], Nauka, Moscow.Google Scholar
  21. 21.
    Loach, P. A. (1976) in Handbook of Biochemistry and Molecular Biology (Fasman, G. D., ed.) 3rd Edn., Vol. 1, CRC Press, Cleveland, pp. 122–130.Google Scholar
  22. 22.
    Rich, P. P., Boveris, A., Bonner, W. D., and Moore, A. L. (1976) Biochem. Biophys. Res. Commun., 71, 695–703.CrossRefPubMedGoogle Scholar
  23. 23.
    Purvis, A. C. (1997) Physiol. Plant., 100, 165–170.CrossRefGoogle Scholar
  24. 24.
    Chung, N., and Aust, S. D. (1995) Arch. Biochem. Biophys., 322, 143–148.CrossRefPubMedGoogle Scholar
  25. 25.
    Winterbourn, C. C. (2008) Nature Chem. Biol., 4, 278–283.CrossRefGoogle Scholar
  26. 26.
    Samuilov, V. D., Renger, G., Paschenko, V. Z., Oleskin, A. V., Gusev, M. V., Gubanova, O. N., Vasil’ev, S. S., and Barsky, E. L. (1995) Photosynthesis Res., 46, 455–465.CrossRefGoogle Scholar
  27. 27.
    Klimov, V. V., Allakhverdiev, S. I., Demeter, Sh., and Krasnovsky, A. A. (1979) Dokl. Akad. Nauk SSSR, 249, 227–230.Google Scholar
  28. 28.
    Rappaport, F., Guergova-Kuras, M., Nixon, P. J., Diner, B. A., and Lavergne, J. (2002) Biochemistry, 41, 8518–8527.CrossRefPubMedGoogle Scholar
  29. 29.
    Grabolle, M., and Dau, H. (2005) Biochim. Biophys. Acta, 1708, 209–218.CrossRefPubMedGoogle Scholar
  30. 30.
    Takahashi, R., Hasegawa, K., and Noguchi, T. (2008) Biochemistry, 47, 6289–6291.CrossRefPubMedGoogle Scholar
  31. 31.
    Samuilov, V. D., and Barsky, E. L. (1993) FEBS Lett., 320, 118–120.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. D. Samuilov
    • 1
    • 2
    Email author
  • L. A. Vasil’ev
    • 1
  • E. V. Dzyubinskaya
    • 1
    • 2
  • D. B. Kiselevsky
    • 1
    • 2
  • A. V. Nesov
    • 1
  1. 1.Department of Physiology of Microorganisms, Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Center for MitoengineeringLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations