Biochemistry (Moscow)

, Volume 75, Issue 2, pp 224–232 | Cite as

Characteristics of binding of zwitterionic liposomes to water-soluble proteins

  • A. S. Dudkina
  • A. A. Selischeva
  • N. I. LarionovaEmail author


The interactions of zwitterionic phospholipids phosphatidylcholine and phosphatidylethanolamine with protein proteinase inhibitors aprotinin and Bowman-Birk soybean proteinase inhibitor have been investigated. An increase in the hydrophobicity of the liposome surface was shown to be an important factor for the formation of proteoliposomes. According to 31P-NMR spectra, incorporation of the proteins into the liposomes does not influence the structural organization of the surface of the liposomes. Increasing the ionic strength does not inhibit the process of proteoliposome formation. Fluorescence assay of the complexes of anthracene-labeled phospholipids with the rhodamine B-labeled protein showed that after the encapsulation into the liposomes, the protein is located inside the particles and between the bilayers. Also, the effect of phospholipids with saturated fatty acid residues on the protein-lipid interaction was studied by differential scanning calorimetry. The results indicate that water-soluble proteins efficiently interact with zwitterionic phospholipids, and the encapsulation of the proteins into the liposomes is provided by electrostatic and hydrophobic forces (in the case of aprotinin) or predominantly by hydrophobic forces (Bowman-Birk soybean proteinase inhibitor).

Key words

phosphatidylcholine phosphatidylethanolamine liposomes aprotinin Bowman-Birk soybean proteinase inhibitor differential scanning calorimetry 



Bowman-Birk soybean proteinase inhibitor










Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bakina, A. S., Selischeva, A. A., Sorokoumova, G. M., and Larionova, N. I. (2006) Biochemistry (Moscow), 71, 84–89.CrossRefGoogle Scholar
  2. 2.
    Martynova, O. M., Tiourina, O. P., Selischeva, A. A., Sorokoumova, G. M., Shvets, V. I., and Larionova, N. I. (2000) Biochemistry (Moscow), 65, 1049–1054.Google Scholar
  3. 3.
    Tiourina, O. P., Sharf, T. V., Selischeva, A. A., Sorokoumova, G. M., Shvets, V. I., and Larionova, N. I. (2001) Biochemistry (Moscow), 66, 340–344.CrossRefGoogle Scholar
  4. 4.
    Tiourina, O., Sharf, T., Balkina, A., Ollivon, M., Selischeva, A. A., Sorokoumova, G. M., and Larionova, N. I. (2003) J. Liposome Res., 13, 213–229.CrossRefPubMedGoogle Scholar
  5. 5.
    Werner, M. H., and Wemmer, D. E. (1992) Biochemistry, 31, 999–1010.CrossRefPubMedGoogle Scholar
  6. 6.
    Voss, R.-M., Ermler, U., Essen, L. O., Wenzl, G., Kim, Y. M., and Flecker, P. (1996) Eur. J. Biochem., 242, 122–131.CrossRefPubMedGoogle Scholar
  7. 7.
    Creighton, T. E., and Goldenberg, D. P. (1984) J. Mol. Biol., 179, 497–526.CrossRefPubMedGoogle Scholar
  8. 8.
    Svetashev, V. I., and Vaskovsky, V. E. (1972) J. Chromatogr., 65, 451–453.CrossRefPubMedGoogle Scholar
  9. 9.
    Bordier, C. (1981) J. Biol. Chem., 256, 1604–1607.PubMedGoogle Scholar
  10. 10.
    Sorokoumova, G. M., Selischeva, A. A., and Kaplun, A. P. (2000) Phospholipids. Methods of Isolation and Detection. Study of Physicochemical Properties of Lipid Dispersions in Water. Manual for Bioorganic Chemistry [in Russian], MITKhT Publishers, Moscow.Google Scholar
  11. 11.
    Bakina, A. S., Selischeva, A. A., and Larionova, N. I. (2008) Biomed. Khim., 54, 441–449.Google Scholar
  12. 12.
    Rodriguez-Vico, F., Martinez-Cayuela, M., Garcia-Peregrin, E., and Ramirez, H. (1989) Anal. Biochem., 183, 275–278.CrossRefPubMedGoogle Scholar
  13. 13.
    De Bony, J., and Tocanne, J. F. (1983) Chem. Phys. Lipids, 32, 105–121.CrossRefGoogle Scholar
  14. 14.
    Mchedlov-Petrossyan, N. O., Vodolazkaya, N. A., and Doroshenko, A. O. (2003) J. Fluoresc., 13, 235–247.CrossRefGoogle Scholar
  15. 15.
    Rance, M., and Byrd, R. A. (1983) J. Magn. Res., 52, 221–240.Google Scholar
  16. 16.
    Balkina, A. S., Selischeva, A. A., Sorokoumova, G. M., Ollivon, M., and Larionova, N. I. (2006) J. Drug Deliv. Sci. Tech., 16, 301–306.Google Scholar
  17. 17.
    Burnell, E. R., Cullis, P. R., and de Kruijff, B. (1980) Biochim. Biophys. Acta, 603, 63–69.CrossRefPubMedGoogle Scholar
  18. 18.
    Cullis, P. R., and de Kruijff, B. (1976) Biochim. Biophys. Acta, 436, 523–540.CrossRefPubMedGoogle Scholar
  19. 19.
    Cullis, P. R., and de Kruijff, B. (1978) Biochim. Biophys. Acta, 507, 207–218.CrossRefPubMedGoogle Scholar
  20. 20.
    Gennis, R. (1997) Biomembranes: Molecular Structure and Function [Russian translation] Mir, Moscow.Google Scholar
  21. 21.
    Webb, M. S., Hui, S. W., and Steponkus, P. L. (1993) Biochim. Biophys. Acta, 1145, 93–104.CrossRefPubMedGoogle Scholar
  22. 22.
    Litzinger, D. C., and Huang, L. (1992) Biochim. Biophys. Acta, 1113, 201–227.PubMedGoogle Scholar
  23. 23.
    Lakowicz, J. R. (1999) Principles of Fluorescence Microscopy, 2nd Edn., Plenum Press, N. Y.Google Scholar
  24. 24.
    Krowarsch, D., and Otlewski, J. (2001) Protein Sci., 10, 715–724.CrossRefPubMedGoogle Scholar
  25. 25.
    Huang, S.-H., and Li, S. (1999) Biochim. Biophys. Acta, 1422, 273–307.PubMedGoogle Scholar
  26. 26.
    Gutbert, T., Frank, J., Bradaczek, H., and Fischer, W. (1997) J. Bacteriol., 79, 2879–2883.Google Scholar
  27. 27.
    Plenat, T., Boichot, S., Dosset, P., Milhiet, P.-E., and le Grimellec, C. (2005) Biophys. J., 89, 4300–4309.CrossRefPubMedGoogle Scholar
  28. 28.
    Liu, F., Lewis, R. N., Hodges, R. S., and McElhaney, R. N. (2004) Biophys. J., 87, 2470–2482.CrossRefPubMedGoogle Scholar
  29. 29.
    Heimburg, T. (1998) Biochim. Biophys. Acta, 1415, 147–162.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhang, Y.-P., Lewis, R. N., Hodges, R. S., and McElhaney, R. N. (1995) Biophys. J., 68, 847–857.CrossRefPubMedGoogle Scholar
  31. 31.
    Nag, K., Keough, K. M. W., and Morrow, M. R. (2006) Biophys. J., 90, 3632–3642.CrossRefPubMedGoogle Scholar
  32. 32.
    Bach, D. (1983) in Biomembrane Structure and Function (Chapman, D., ed.) MacMillan Press, London, pp. 1–41.Google Scholar
  33. 33.
    Boggs, J. M., Rangaraj, G., Koshy, K. M., Ackerly, C., Wood, D. D., and Moscarello, M. A. (1999) J. Neurosci. Res., 57, 529–535.CrossRefPubMedGoogle Scholar
  34. 34.
    Tuominen, E. K., Wallace, C. J., and Kinnunen, P. K. (2002) J. Biol. Chem., 277, 8822–8826.CrossRefPubMedGoogle Scholar
  35. 35.
    Jung, J. E., and Kim, H. (1990) J. Biochem. (Tokyo), 107, 530–534.Google Scholar
  36. 36.
    Weers, P. M., and Ryan, R. O. (2003) Insect. Biochem. Mol. Biol., 33, 1249–1260.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. S. Dudkina
    • 1
  • A. A. Selischeva
    • 2
  • N. I. Larionova
    • 1
    Email author
  1. 1.Chemical FacultyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Biological FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations