Advertisement

Biochemistry (Moscow)

, Volume 75, Issue 2, pp 208–213 | Cite as

Examination of stability of mutant photosynthetic reaction center of Rhodobacter sphaeroides I(L177)H and determination of location of bacteriochlorophyll covalently bound to the protein

  • T. Y. FufinaEmail author
  • L. G. Vasilieva
  • V. A. Shuvalov
Article

Abstract

We demonstrated earlier that as a result of the I(L177)H mutation in the photosynthetic reaction center (RC) of the bacterium Rhodobacter sphaeroides, one of the bacteriochlorophylls (BChl) binds with the L-subunit, simultaneously raising coordination stability of the central magnesium atom of the bacteriochlorophyll associated with the protein. In this study, spectral properties of wild type RC and I(L177)H in the presence of urea and SDS as well as at 48°C were examined. It is shown that the I(L177)H mutation decreases the RC stability. Under denaturing conditions, some changes indicating breakdown of oligomeric structure of the complex and loss of interaction between pigments and their protein environment are observed in I(L177)H RC spectra. In addition, pheophytinization of bacteriochlorophylls occurs in both types of RC in the presence of SDS. However, an 811-nm band is observed in the spectrum of the mutant RC under these conditions, which indicates retention of one of the BChl molecules in the protein binding site and stable coordination of its central magnesium atom. It is shown that in both types of RC, monomeric BChl BB can be modified by sodium borohydride treatment and then extracted by acetone-methanol mixture. Spectral properties of the BChl covalently bound with the protein in I(L177)H RC do not change. The results demonstrate that BChl PA is the molecule of BChl tightly bound with the L-sub- unit in mutant RC as it was supposed earlier.

Key words

bacterial photosynthesis site-directed mutagenesis coordination of magnesium atom reaction center bacteriochlorophyll Rhodobacter sphaeroides stability of membrane-associated proteins 

Abbreviations

BChl

bacteriochlorophyll

BPheo

bacteriopheophytin

P

special pair of bacteriochlorophylls

PA and BA

bacteriochlorophylls of active electron transport branch

PB and BB

bacteriochlorophylls of inactive electron transfer branch

RC

reaction center

SDS

sodium dodecyl sulfate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H. (1984) J. Mol. Biol., 180, 385–398.CrossRefPubMedGoogle Scholar
  2. 2.
    Wakeham, M. C., and Jones, M. R. (2005) Biochem. Soc. Trans., 33, 851–857.CrossRefPubMedGoogle Scholar
  3. 3.
    Yakovlev, A. G., Jones, M. R., Potter, J. A., Fyfe, P. K., Vasilieva, L. G., Shkuropatov, A. Ya., and Shuvalov, V. A. (2005) Chem. Phys., 319, 297–307.CrossRefGoogle Scholar
  4. 4.
    Potter, J. A., Fyfe, P. K., Frolov, D., Wakeham, M. C., van Grondelle, R., Robert, B., and Jones, M. R. (2005) J. Biol. Chem., 280, 27155–27164.CrossRefPubMedGoogle Scholar
  5. 5.
    Mokronosov, A. T., and Gavrilenko, V. F. (1992) Photosynthesis. Physiological, Ecological, and Biochemical Aspects [in Russian], Moscow State University Publishers, Moscow.Google Scholar
  6. 6.
    Pierson, B. K., and Thornber, J. P. (1983) Proc. Natl. Acad. Sci. USA, 80, 80–84.CrossRefPubMedGoogle Scholar
  7. 7.
    Nozawa, T., and Madigan, M. T. (1991) J. Biochem., 110, 588–594.PubMedGoogle Scholar
  8. 8.
    Antolini, F., Trotta, M., and Nicolini, C. (1995) Thin Solid Films, 254, 252–256.CrossRefGoogle Scholar
  9. 9.
    Khatypov, R. A., Vasilieva, L. G., Fufina, T. Y., Bolgarina, T. I., and Shuvalov, V. A. (2005) Biochemistry (Moscow), 70, 1256–1261.CrossRefGoogle Scholar
  10. 10.
    Fufina, T. Y., Vasilieva, L. G., Khatypov, R. A., Shkuropatov, A. Y., and Shuvalov, V. A. (2007) FEBS Lett., 581, 5769–5773.CrossRefPubMedGoogle Scholar
  11. 11.
    Maroti, P., Kirmaier, C., Wraight, C., Holten, D., and Pearlstein, R. M. (1985) Biochim. Biophys. Acta, 810, 132–139.CrossRefGoogle Scholar
  12. 12.
    Van der Rest, M., and Gingras, G. (1974) J. Biol. Chem., 249, 6446–6453.PubMedGoogle Scholar
  13. 13.
    Hughes, A. V., Rees, P., Heathcote, P., and Jones, M. R. (2006) Biophys. J., 90, 4155–4166.CrossRefPubMedGoogle Scholar
  14. 14.
    Tandori, J., Tokaji, Z., Misurda, K., and Maroti, P. (2005) Photochem. Photobiol., 81, 1518–1525.CrossRefPubMedGoogle Scholar
  15. 15.
    DeGrado, W. F., Gratkowski, T. T., and Lear, J. P. (2003) Protein Sci., 12, 647–665.CrossRefPubMedGoogle Scholar
  16. 16.
    Finkelshtein, A. V., and Ptitsyn, O. B. (2005) Protein Physics [in Russian], Knizhnyi Dom Universitet Publisher, Moscow.Google Scholar
  17. 17.
    Srtaley, S. C., Parson, W. W., Mauzerall, D. C., and Clayton, R. K. (1973) Biochim. Biophys. Acta, 305, 597–609.CrossRefGoogle Scholar
  18. 18.
    Shuvalov, V. A., Shkuropatov, A. Ya., Kulakova, S. M., Ismailov, M. A., and Shkuropatova, V. A. (1986) Biochim. Biophys. Acta, 849, 337–346.CrossRefGoogle Scholar
  19. 19.
    Struck, A., Muller, A., and Scheer, H. (1991) Biochim. Biophys. Acta, 1060, 262–270.CrossRefGoogle Scholar
  20. 20.
    Scheer, H., and Struck, A. (1993) in The Photosynthetic Reaction Center (Deisenhofer, J., and Norris, J. R., eds.) Vol. 1, Academic Press, N. Y., pp. 157–191.Google Scholar
  21. 21.
    Beese, D., Steiner, R., Scheer, H., Angerhofer, A., Robert, B., and Lutz, M. (1988) Photochem. Photobiol., 47, 293–304.CrossRefGoogle Scholar
  22. 22.
    Camara-Artigas, A., Magee, A., Goetsch, A., and Allen, J. P. (2002) Photosynth. Res., 74, 87–93.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • T. Y. Fufina
    • 1
    Email author
  • L. G. Vasilieva
    • 1
  • V. A. Shuvalov
    • 1
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations