Advertisement

Biochemistry (Moscow)

, Volume 75, Issue 2, pp 192–200 | Cite as

Statistical analysis of unstructured amino acid residues in protein structures

  • M. Yu. Lobanov
  • S. O. Garbuzynskiy
  • O. V. GalzitskayaEmail author
Article

Abstract

We have performed a statistical analysis of unstructured amino acid residues in protein structures available in the databank of protein structures. Data on the occurrence of disordered regions at the ends and in the middle part of protein chains have been obtained: in the regions near the ends (at distance less than 30 residues from the N- or C-terminus), there are 66% of unstructured residues (38% are near the N-terminus and 28% are near the C-terminus), although these terminal regions include only 23% of the amino acid residues. The frequencies of occurrence of unstructured residues have been calculated for each of 20 types in different positions in the protein chain. It has been shown that relative frequencies of occurrence of unstructured residues of 20 types at the termini of protein chains differ from the ones in the middle part of the protein chain; amino acid residues of the same type have different probabilities to be unstructured in the terminal regions and in the middle part of the protein chain. The obtained frequencies of occurrence of unstructured residues in the middle part of the protein chain have been used as a scale for predicting disordered regions from amino acid sequence using the method (FoldUnfold) previously developed by us. This scale of frequencies of occurrence of unstructured residues correlates with the contact scale (previously developed by us and used for the same purpose) at a level of 95%. Testing the new scale on a database of 427 unstructured proteins and 559 completely structured proteins has shown that this scale can be successfully used for the prediction of disordered regions in protein chains.

Key words

unstructured regions intrinsically disordered regions natively unfolded proteins globular proteins stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tompa, P. (2002) Trends Biochem. Sci., 27, 527–533.CrossRefPubMedGoogle Scholar
  2. 2.
    Wright, P. E., and Dyson, H. J. (1999) J. Mol. Biol., 293, 321–331.CrossRefPubMedGoogle Scholar
  3. 3.
    Radhakrishnan, I., Perez-Alvarado, G. C., Parker, D., Dyson, H. J., Montminy, M. R., and Wright, P. E. (1997) Cell, 91, 741–752.CrossRefPubMedGoogle Scholar
  4. 4.
    Dunker, A. K., Brown, C. J., Lawson, J. D., Iakoucheva, L. M., and Obradovic, Z. (2002) Biochemistry, 41, 6573–6582.CrossRefPubMedGoogle Scholar
  5. 5.
    Dyson, H. J., and Wright, P. E. (2002) Adv. Protein Chem., 62, 311–340.CrossRefPubMedGoogle Scholar
  6. 6.
    Sickmeier, M., Hamilton, J. A., LeGall, T., Vacic, V., Cortese, M. S., Tantos, A., Szabo, B., Tompa, P., Chen, J., Uversky, V. N., Obradovic, Z., and Dunker, A. K. (2007) Nucleic Acids Res., 35, D786–793.CrossRefPubMedGoogle Scholar
  7. 7.
    Romero, P., Obradovic, Z., Kissinger, C. R., Villafranca, L. E., and Dunker, A. K. (1997) Proc. IEE Int. Conf. on Neural Networks, pp. 90–95.Google Scholar
  8. 8.
    Li, X., Romero, P., Rani, M., Dunker, A. K., and Obradovic, A. Z. (1999) Genome Inform., 10, 30–40.Google Scholar
  9. 9.
    Galzitskaya, O. V., Garbuzynskiy, S. O., and Lobanov, M. Y. (2006) PLoS Comput. Biol., 2, 1639–1648.CrossRefGoogle Scholar
  10. 10.
    Galzitskaya, O. V., Garbuzynskiy, S. O., and Lobanov, M. Yu. (2006) Bioinformatics, 22, 2948–2949.CrossRefPubMedGoogle Scholar
  11. 11.
    Galzitskaya, O. V., Garbuzynskiy, S. O., and Lobanov, M. Y. (2006) Mol. Biol. (Moscow), 40, 341–348.Google Scholar
  12. 12.
    Coeytaux, K., and Poupon, A. (2005) Bioinformatics, 21, 1891–1900.CrossRefPubMedGoogle Scholar
  13. 13.
    Dosztanyi, Z., Csizmok, V., Tompa, P., and Simon, I. (2005) J. Mol. Biol., 347, 827–839.CrossRefPubMedGoogle Scholar
  14. 14.
    Dosztanyi, Z., Csizmok, V., Tompa, P., and Simon, I. (2005) Bioinformatics, 21, 3433–3434.CrossRefPubMedGoogle Scholar
  15. 15.
    Linding, R., Russell, R. B., Neduva, V., and Gibson, T. J. (2003) Nucleic Acids Res., 31, 3701–3708.CrossRefPubMedGoogle Scholar
  16. 16.
    Prilusky, J., Felder, C. E., Zeev-Ben-Mordehai, T., Rydberg, E. H., Man, O., Beckmann, J. S., Silman, I., and Sussman, J. L. (2005) Bioinformatics, 21, 3435–3438.CrossRefPubMedGoogle Scholar
  17. 17.
    Yang, Z. R., Thomson, R., McNeil, P., and Esnouf, R. M. (2005) Bioinformatics, 21, 3369–3376.CrossRefPubMedGoogle Scholar
  18. 18.
    Ward, J. J., McGuffin, L. J., Bryson, K., Buxton, B. F., and Jones, D. T. (2004) Bioinformatics, 20, 2138–2139.CrossRefPubMedGoogle Scholar
  19. 19.
    Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M., Romero, P., Oh, J. S., Oldfield, C. J., Campen, A. M., Ratliff, C. M., Hipps, K. W., Ausio, J., Nissen, M. S., Reeves, R., Kang, C., Kissinger, C. R., Bailey, R. W., Griswold, M. D., Chiu, W., Garner, E. C., and Obradovic, Z. (2001) J. Mol. Graph. Model., 19, 26–59.CrossRefPubMedGoogle Scholar
  20. 20.
    Radivojac, P., Iakoucheva, L. M., Oldfield, C. J., Obradovic, Z., Uversky, V. N., and Dunker, A. K. (2007) Biophys. J., 92, 1439–1456.CrossRefPubMedGoogle Scholar
  21. 21.
    Williams, R. M., Obradovic, Z., Mathura, V., Braun, W., Garner, E. C., Young, J., Takayama, S., Brown, C. J., and Dunker, A. K. (2001) Pac. Symp. Biocomput., 89–100.Google Scholar
  22. 22.
    Romero, P., Obradovic, Z., Li, X., Garner, E. C., Brown, C. J., and Dunker, A. K. (2001) Proteins, 42, 38–48.CrossRefPubMedGoogle Scholar
  23. 23.
    Campen, A., Williams, R. M., Brown, C. J., Meng, J., Uversky, V. N., and Dunker, A. K. (2008) Protein Pept. Lett., 15, 956–963.CrossRefPubMedGoogle Scholar
  24. 24.
    Bairoch, A., and Apweiler, R. (2000) Nucleic Acids Res., 28, 45–48.CrossRefPubMedGoogle Scholar
  25. 25.
    Melamud, E., and Moult, J. (2003) Proteins: Structure, Function, and Bioinformatics, 53(Suppl. 6), 561–565.Google Scholar
  26. 26.
    Jin, Y., and Dunbrack, R. L., Jr. (2005) Proteins: Structure, Function, and Bioinformatics, 61(Suppl. 7), 167–175.CrossRefGoogle Scholar
  27. 27.
    Bordoli, L., Kiefer, F., and Schwede, T. (2007) Proteins, 69(Suppl. 8), 129–136.CrossRefPubMedGoogle Scholar
  28. 28.
    Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P., Brown, C. J., and Dunker, A. K. (2003) Proteins, 53, 566–572.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • M. Yu. Lobanov
    • 1
  • S. O. Garbuzynskiy
    • 1
  • O. V. Galzitskaya
    • 1
    Email author
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations