Advertisement

Biochemistry (Moscow)

, Volume 75, Issue 2, pp 159–172 | Cite as

Formation of plant cell wall supramolecular structure

  • T. A. GorshkovaEmail author
  • P. V. Mikshina
  • O. P. Gurjanov
  • S. B. Chemikosova
Review

Abstract

Plant cell wall is an example of a widespread natural supramolecular structure: its components are considered to be the most abundant organic compounds renewable by living organisms. Plant cell wall includes numerous components, mainly polysaccharidic; its formation is largely based on carbohydrate-carbohydrate interactions. In contrast to the extracellular matrix of most other organisms, the plant cell compartment located outside the plasma membrane is so structured that has been named “wall”. The present review summarizes data on the mechanisms of formation of this supramolecular structure and considers major difficulties and results of research. Existing approaches to the study of interactions between polysaccharides during plant cell wall formation have been analyzed, including: (i) characterization of the structure of natural polysaccharide complexes obtained during cell wall fractionation; (ii) analysis of the interactions between polysaccharides “at mixing in a tube”; (iii) study of the interactions between isolated individual plant cell wall matrix polysaccharides and microfibrils formed by cellulose-synthesizing microorganisms; and (iv) investigation of cell wall formation and modification directly in plant objects. The key stages in formation of plant cell wall supramolecular structure are defined and characterized as follows: (i) formation of cellulose microfibrils; (ii) interactions between matrix polysaccharides within Golgi apparatus substructures; (iii) interaction between matrix polysaccharides, newly secreted outside the plasma membrane, and cellulose microfibrils during formation of the latter; (iv) packaging of the formed complexes and individual polysaccharides in cell wall layers; and (v) modification of deposited cell wall layers.

Key words

cell wall supramolecular structure cellulose microfibrils cross-linking glycans pectin substances carbohydrate-carbohydrate interactions 

Abbreviations

CP/MAS 13C-NMR

cross-polarization NMR spectroscopy of 13C nuclei with magic angle rotation

FTIR

spectroscopy, Fourier transform infrared spectroscopy

GalA

galacturonic acid

GlcA

glucuronic acid

Rha

rhamnose

SP/MAS 13C-NMR

single-pulse sequence in NMR spectroscopy of 13C nuclei with magic angle rotation

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gorshkova, T. A., Ageeva, M. V., Salnikov, V. V., Pavlencheva, N. V., Snegireva, A. V., Chernova, T. E., and Chemikosova, S. B. (2003) Bot. Zh., 88, 1–11.Google Scholar
  2. 2.
    Bovin, N. V. (1996) Biochemistry (Moscow), 61, 694–704.Google Scholar
  3. 3.
    Hakomori, S. (2004) Glycoconj. J., 21, 125–137.PubMedCrossRefGoogle Scholar
  4. 4.
    Fry, S. C. (1988) in The Growing Plant Cell Wall: Chemical and Metabolic Analysis, Longman Sci. Technic., N. Y., 333 p.Google Scholar
  5. 5.
    Carpita, N., and McCann, M. (2000) in Biochemistry and Molecular Biology of Plants (Buchana, B., Gruissem, W., and Jones, R., eds.) American Society of Plant Physiologists, Rockville, pp. 52–108.Google Scholar
  6. 6.
    Gorshkova, T. A. (2007) Plant Cell Wall as a Dynamic System [in Russian], Nauka, Moscow.Google Scholar
  7. 7.
    Zykwinska, A. W., Ralet, M. C. J., Garnier, C. D., and Thibault, J. F. J. (2005) Plant Physiol., 139, 397–407.PubMedCrossRefGoogle Scholar
  8. 8.
    Zykwinska, A., Rondeau-Mouro, C., Garnier, C., Thibault, J. F., and Ralet, M. C. (2006) Carbohydr. Polym., 65, 510–520.CrossRefGoogle Scholar
  9. 9.
    Talbott, L. D., and Ray, P. M. (1992) Plant Physiol., 98, 357–368.PubMedCrossRefGoogle Scholar
  10. 10.
    Carpita, N. C., and Gibeaut, D. M. (1993) Plant J., 3, 1–30.PubMedCrossRefGoogle Scholar
  11. 11.
    Knox, J. P. (1997) Int. Rev. Cytol., 171, 79–120.PubMedCrossRefGoogle Scholar
  12. 12.
    Gorshkova, T., and Morvan, C. (2006) Planta, 223, 149–158.PubMedCrossRefGoogle Scholar
  13. 13.
    Hayashi, T. (1989) Plant Physiol. Plant Mol. Biol., 40, 139–168.CrossRefGoogle Scholar
  14. 14.
    Vissenberg, K., Sandt, V. V., Fry, S. C., and Verbelen, J. P. (2003) J. Exp. Bot., 54, 335–344.PubMedCrossRefGoogle Scholar
  15. 15.
    Mellerowicz, E. J., Immerzeel, P., and Hayashi, T. (2008) Ann. Botany, 102, 659–665.CrossRefGoogle Scholar
  16. 16.
    Chambat, G., Barnoud, F., and Joseleau, J. P. (1984) Plant Physiol., 74, 687–693.PubMedCrossRefGoogle Scholar
  17. 17.
    Hayashi, T., and Maclachlan, G. (1984) Plant Physiol., 76, 739–742.PubMedCrossRefGoogle Scholar
  18. 18.
    Pauly, M., Albersheim, P., Darvill, A., and York, W. S. (1999) Plant J., 20, 629–639.PubMedCrossRefGoogle Scholar
  19. 19.
    Rose, J. K. C., Hadfield, K. A., Labavitch, J. M., and Bennett, A. B. (1998) Plant Physiol., 117, 345–361.PubMedCrossRefGoogle Scholar
  20. 20.
    Gurjanov, O. P., Ibragimova, N. N., Gnezdilov, O. I., and Gorshkova, T. A. (2008) Carbohydr. Res., 72, 719–729.Google Scholar
  21. 21.
    Lu, F., and Ralph, J. (2003) Plant J., 35, 535–544.PubMedCrossRefGoogle Scholar
  22. 22.
    Joseleau, J. P., Chambat, J., and Chumpitazi-Hermosa, B. (1980) Carbohydr. Res., 90, 339–344.CrossRefGoogle Scholar
  23. 23.
    Carpita, N. C. (1983) Plant. Physiol., 72, 515–521.PubMedCrossRefGoogle Scholar
  24. 24.
    Carpita, N. C. (1984) Plant. Physiol., 76, 205–212.PubMedCrossRefGoogle Scholar
  25. 25.
    Popper, Z. A., and Fry, S. C. (2008) Planta, 227, 781–794.PubMedCrossRefGoogle Scholar
  26. 26.
    Kobayashi, M., Matoh, T., and Junichi, A. (1996) Plant Physiol., 110, 1017–1020.PubMedGoogle Scholar
  27. 27.
    Ishii, T., Matsunaga, T., Pellerin, P., O’Neill, M. A., Darvill, A., and Albersheim, P. (1999) J. Biol. Chem., 274, 13098–13109.PubMedCrossRefGoogle Scholar
  28. 28.
    Grabber, J. H., Ralph, J., Lapierre, C., and Barriere, Y. (2004) C. R. Biol., 327, 455–465.PubMedCrossRefGoogle Scholar
  29. 29.
    Fry, S. C., Willis, S. C., and Paterson, A. E. J. (2000) Planta, 211, 679–692.PubMedCrossRefGoogle Scholar
  30. 30.
    Rouau, X., Cheynier, V., Surget, A., Gloux, D., Barron, C., Meudec, E., Louis-Montero, J., and Criton, M. (2003) Phytochemistry, 63, 899–903.PubMedCrossRefGoogle Scholar
  31. 31.
    Bunzel, M., Ralph, J., Bruning, P., and Steinhart, H. (2006) J. Agric. Food Chem., 54, 6409–6418.PubMedCrossRefGoogle Scholar
  32. 32.
    Kato, A., Azuma, J., and Koshijima, A. (1983) Chem. Lett., 137–140.Google Scholar
  33. 33.
    Hartley, R. D., Morrison, W. H., Balza, F., and Towers, G. H. N. (1990) Phytochemistry, 29, 3699–3703.CrossRefGoogle Scholar
  34. 34.
    Ishii, T., Panaud, O., Brar, D. S., and Khush, G. S. (1990) Plant Mol. Biol. Rep., 8, 167–179.CrossRefGoogle Scholar
  35. 35.
    Lavigne, M., Francis, N. J., King, I. F., and Kingston, R. E. (2004) Mol. Cell, 13, 415–425.PubMedCrossRefGoogle Scholar
  36. 36.
    Mueller-Harvey, I., Hartley, R. D., Harris, P. J., and Curzon, E. H. (1986) Carbohydr. Res., 148, 71–85.CrossRefGoogle Scholar
  37. 37.
    Ralet, M. C., Monique, A. V. A., and Thibault, J. F. (1994) Carbohydr. Res., 260, 271–282.CrossRefGoogle Scholar
  38. 38.
    Wallace, G., and Fry, S. C. (1994) Int. Rev. Cytol., 151, 229–267.PubMedCrossRefGoogle Scholar
  39. 39.
    Fry, S. C. (1986) Ann. Rew. Plant Physiol., 37, 165–186.Google Scholar
  40. 40.
    Lozovaya, V. V., Gorshkova, T. A., Rumyantseva, N. I., Ulanov, A. V., Valieva, A. I., Yablokova, E. V., and Mei, Ch. (2000) Plant Sci., 152, 79–85.CrossRefGoogle Scholar
  41. 41.
    Biggs, K. J., and Fry, S. C. (1987) in Physiology of Cell Expansion during Plant Growth (Cosgrov, D. J., and Knievel, D. P., eds.) American Society of Plant Physiologists, Rockville, pp. 46–57.Google Scholar
  42. 42.
    Iiyama, K., Lam, T. B. T., and Stone, B. A. (1994) Plant Physiol., 104, 315–320.PubMedGoogle Scholar
  43. 43.
    Grant, G. T., Morris, E. R., Rees, D. A., Smith, P. J. C., and Thom, D. (1973) FEBS Lett., 32, 195–198.CrossRefGoogle Scholar
  44. 44.
    Showalter, A. M. (2001) Cell Mol. Life Sci., 58, 1399–1417.PubMedCrossRefGoogle Scholar
  45. 45.
    Vincken, J. P., de Keizer, A., Beldman, C., and Voragen, A. G. J. (1995) Plant Physiol., 108, 1579–1585.PubMedCrossRefGoogle Scholar
  46. 46.
    Hayashi, T., Marsden, M. P. F., and Delmer, D. P. (1987) Plant Physiol., 83, 384–389.PubMedCrossRefGoogle Scholar
  47. 47.
    Baba, K., Sone, Y., Misaki, A., and Hayashi, T. (1994) Plant Cell Physiol., 35, 439–444.Google Scholar
  48. 48.
    Rizk, S. E., Abdel-Massih, R. M., Baydoun, E. A. H., and Brett, C. T. (2000) Planta, 211, 423–429.PubMedCrossRefGoogle Scholar
  49. 49.
    Abdel-Massih, R. M., Baydoun, E. A. H., and Brett, C. T. (2003) Planta, 216, 502–511.PubMedGoogle Scholar
  50. 50.
    Brett, C. T., Baydoun, E., and Abdel-Masih, R. (2005) Plant Biosystems, 139, 54–59.Google Scholar
  51. 51.
    Zykwinska, A., Gaillard, C., Buleon, A., Pontoire, B., Garnier, C., Thibault, J. F., and Ralet, M. C. (2007) Biomacromolecules, 8, 223–232.PubMedCrossRefGoogle Scholar
  52. 52.
    Brett, C. T., Healy, S. A., McDonald, M. S., Macgregor, C., and Baydoun, E. A. H. (1997) Int. J. Biol. Macromol., 21, 69–73.CrossRefGoogle Scholar
  53. 53.
    Patel, T. R., Harding, S. E., Ebringerova, A., Deszczynski, M., Hromadkova, Z., Togol, A., Paulsen, B. S., Morris, G. A., and Rowe, A. J. (2007) Biophys. J., 93, 741–749.PubMedCrossRefGoogle Scholar
  54. 54.
    Rojo, J., Morales, J. C., and Penades, S. (2002) Topics Curr. Chem., 218, 45–92.CrossRefGoogle Scholar
  55. 55.
    Mishima, T., Hisamatsu, M., York, W. S., Teranishi, K., and Yamada, T. (1998) Carbohydr. Res., 308, 389–395.CrossRefGoogle Scholar
  56. 56.
    Linder, A. P., Bergman, R., Bodin, A., and Gatenholm, P. (2003) Langmuir, 19, 5072–5077.CrossRefGoogle Scholar
  57. 57.
    Kohnke, T., Pujolras, C., Roubroeks, J. P., and Gatenholm, P. (2008) Cellulose, 15, 537–546.CrossRefGoogle Scholar
  58. 58.
    Roland, J. C., Vian, B., and Reis, D. (1977) Protoplasma, 91, 125–141.CrossRefGoogle Scholar
  59. 59.
    Hayashi, T., Ogawa, K., and Mitsuishi, Y. (1994) Plant Cell Physiol., 35, 1199–1205.Google Scholar
  60. 60.
    Chambat, G., Karmous, M., Costes, M., Picard, M., and Joseleau, J. P. (2005) Cellulose, 12, 117–125.CrossRefGoogle Scholar
  61. 61.
    Lima, D. U., Loh, W., and Buckeridge, M. S. (2004) Plant Physiol. Biochem., 42, 389–394.PubMedCrossRefGoogle Scholar
  62. 62.
    Hanus, J., and Mazeau, K. (2006) Biopolymers, 81, 59–73.CrossRefGoogle Scholar
  63. 63.
    Levy, S., York, W. S., Stuike-Prill, R., Meyer, B., and Staehelin, L. A. (1991) Plant J., 1, 195–215.PubMedCrossRefGoogle Scholar
  64. 64.
    Kabel, M. S., van den Borne, H., Vincken, J. P., Voragen, A. G. J., and Schols, H. A. (2007) Carbohydr. Polym., 69, 94–105.CrossRefGoogle Scholar
  65. 65.
    Harding, S. E. (2005) Carbohydr. Res., 340, 811–826.PubMedCrossRefGoogle Scholar
  66. 66.
    Golubev, V. N., and Shelukhina, N. P. (1995) Pectin: Chemistry, Technology, and Application [in Russian], RATN IECh, Moscow.Google Scholar
  67. 67.
    Thakur, B. R., Singh, R. K., and Handa, A. K. (1997) Crit. Rev. Food Sci. Nutr., 37, 47–73.PubMedCrossRefGoogle Scholar
  68. 68.
    Willats, W. G. T., Knox, J. P., and Mikkelsen, J. D. (2006) Trends Food Sci. Technol., 17, 97–104.CrossRefGoogle Scholar
  69. 69.
    Mohnen, D. (2008) Curr. Opin. Plant Biol., 11, 266–277.PubMedCrossRefGoogle Scholar
  70. 70.
    Darley, C. P., Forrester, A. M., and McQueen-Mason, S. J. (2001) Plant Mol. Biol., 47, 179–195.PubMedCrossRefGoogle Scholar
  71. 71.
    Whitney, S. E. C., Brigham, J. E., Darke, A. H., Reid, J. S. G., and Gidley, M. J. (1995) Plant J., 8, 491–504.CrossRefGoogle Scholar
  72. 72.
    Iwata, T., Indrarti, L., and Azuma, J. I. (1998) Cellulose, 5, 215–228.CrossRefGoogle Scholar
  73. 73.
    Whitney, S. E. C., Gothard, M. G. E., Mitchell, J. T., and Gidley, M. J. (1999) Plant Physiol., 121, 657–663.PubMedCrossRefGoogle Scholar
  74. 74.
    Whitney, S. E. C., Gidley, M. J., and McQueen-Mason, S. J. (2000) Plant J., 22, 327–334.PubMedCrossRefGoogle Scholar
  75. 75.
    Chanliaud, E., de Silva, J., Strongitharm, B., Jeronimidis, G., and Gidley, M. J. (2004) Plant J., 38, 27–37.PubMedCrossRefGoogle Scholar
  76. 76.
    Atalla, R. H., Hackney, J. M., Uhlin, I., and Thompson, N. S. (1993) Int. J. Biol. Macromol., 15, 109–112.PubMedCrossRefGoogle Scholar
  77. 77.
    Hackney, J. M., Atalla, R. H., and Vander Hart, D. L. (1994) Int. J. Biol. Macromol., 16, 215–218.PubMedCrossRefGoogle Scholar
  78. 78.
    Uhlin, K. I., Atalla, R. H., and Thompson, N. S. (1995) Cellulose, 2, 129–144.CrossRefGoogle Scholar
  79. 79.
    Yamamoto, H., Horii, F., and Hirai, A. (1996) Cellulose, 3, 229–242.CrossRefGoogle Scholar
  80. 80.
    Tokoh, C., Takabe, K., Sugiyama, J., and Fujita, M. (2002) Cellulose, 9, 65–74.CrossRefGoogle Scholar
  81. 81.
    Smith, R. C., and Fry, S. C. (1991) Biochem. J., 279, 529–535.PubMedGoogle Scholar
  82. 82.
    Thompson, J. E., Smith, R. C., and Fry, S. C. (1997) Biochem. J., 327, 699–708.PubMedGoogle Scholar
  83. 83.
    Thompson, J. E., and Fry, S. C. (2001) Carbohydr. Res., 332, 175–182.PubMedCrossRefGoogle Scholar
  84. 84.
    Kerr, E. M., and Fry, S. C. (2003) Planta, 217, 327–339.PubMedGoogle Scholar
  85. 85.
    Kerr, E. M., and Fry, S. C. (2004) Planta, 219, 73–83.PubMedCrossRefGoogle Scholar
  86. 86.
    Popper, Z. A., and Fry, S. C. (2005) Ann. Bot., 96, 91–99.PubMedCrossRefGoogle Scholar
  87. 87.
    Burr, S. J., and Fry, S. C. (2009) The Plant J., doi: 10.1111/j.1365 313X.2009.03800.x.Google Scholar
  88. 88.
    Lindsay, S. E., and Fry, S. C. (2008) Planta, 227, 439–452.PubMedCrossRefGoogle Scholar
  89. 89.
    Obel, N., Porchia, A. C., and Scheller, H. V. (2003) Planta, 216, 620–629.PubMedGoogle Scholar
  90. 90.
    Edelmann, H. G., and Fry, S. C. (1992) J. Exp. Bot., 43, 463–470.CrossRefGoogle Scholar
  91. 91.
    Thompson, J. E., and Fry, S. C. (1997) J. Exp. Bot., 48, 297–305.CrossRefGoogle Scholar
  92. 92.
    Gibeaut, D. M., and Carpita, N. C. (1991) Plant Physiol., 97, 551–561.PubMedCrossRefGoogle Scholar
  93. 93.
    Gorshkova, T. A., Chemikosova, S. B., Lozovaya, V. V., and Carpita, N. C. (1997) Plant Physiol., 114, 723–729.PubMedGoogle Scholar
  94. 94.
    Gorshkova, T. A., Ageeva, M., Chemikosova, S., and Salnikov, V. (2005) Plant Biosystems, 139, 88–92.Google Scholar
  95. 95.
    Salnikov, V. V., Ageeva, M. V., and Gorshkova, T. A. (2008) Protoplasma, 233, 269–273.PubMedCrossRefGoogle Scholar
  96. 96.
    Nishikubo, N., Awano, T., Banasiak, A., Bourquin, V., Ibatullin, F., Funada, R., Brumer, H., Teeri, T. T., Hayashi, T., Sundberg, B., and Mellerowicz, E. J. (2007) Plant Cell Physiol., 48, 843–855.PubMedCrossRefGoogle Scholar
  97. 97.
    Gibeaut, D. M., and Carpita, N. C. (1994) FASEB J., 8, 904–915.PubMedGoogle Scholar
  98. 98.
    Aleshina, L. A., Glazkova, S. V., Lugovskaya, L. A., Podoynikova, M. V., Fofanov, A. D., and Silina, E. V. (2001) Khim. Rast. Syr’ya, 1, 5–36.Google Scholar
  99. 99.
    Herth, W. (1985) Planta, 164, 12–21.CrossRefGoogle Scholar
  100. 100.
    Newman, R. H. (1999) Holzforschung, 53, 335–340.CrossRefGoogle Scholar
  101. 101.
    Vietor, R., Newman, R. H., Ha, M. A., Apperley, D. C., and Jarvis, M. C. (2002) Plant J., 30, 721–731.PubMedCrossRefGoogle Scholar
  102. 102.
    Larsson, P. T., Wickholm, K., and Iversen, T. (1997) Carbohydr. Res., 302, 19–25.CrossRefGoogle Scholar
  103. 103.
    Mohnen, D. (1999) in Comprehensive Natural Products Chemistry, Vol. 3 (Barton, D., Nakanishi, K., Meth-Cohn, O., and Pinto, B. M., eds.) Elsevier, Oxford, pp. 497–527.Google Scholar
  104. 104.
    Kauss, H., Swanson, A. L., and Hassid, W. Z. (1967) Biochem. Biophys. Res. Commun., 26, 234–240.PubMedCrossRefGoogle Scholar
  105. 105.
    Goubet, F., and Mohnen, D. (1999) Planta, 209, 112–117.PubMedCrossRefGoogle Scholar
  106. 106.
    Pauly, M., and Scheller, H. V. (2000) Planta, 210, 659–667.PubMedCrossRefGoogle Scholar
  107. 107.
    Fry, S. C. (1987) Planta, 171, 205–211.CrossRefGoogle Scholar
  108. 108.
    Myton, K. E., and Fry, S. C. (1994) Planta, 193, 326–330.CrossRefGoogle Scholar
  109. 109.
    Yoshida-Shimokawa, T., Yoshida, S., Kakegawa, K., and Ishii, T. (2001) Planta, 212, 470–474.PubMedCrossRefGoogle Scholar
  110. 110.
    Yokoyama, R., and Nishitani, K. (2001) Plant Cell Physiol., 42, 1025–1033.PubMedCrossRefGoogle Scholar
  111. 111.
    Carrington, C. M. S., Greve, L. C., and Labavitch, J. M. (1993) Plant Physiol., 103, 429–434.PubMedGoogle Scholar
  112. 112.
    Bowles, D. J., and Northcote, D. H. (1974) Biochem. J., 142, 139–144.PubMedGoogle Scholar
  113. 113.
    Fry, S. C. (2003) in Encyclopedia of Applied Plant Sciences (Thomas, B., ed.) Elsevier Ltd., pp. 75–87.Google Scholar
  114. 114.
    Proseus, T. E., and Boyer, J. S. (2005) Ann. Bot., 95, 967–979.PubMedCrossRefGoogle Scholar
  115. 115.
    Proseus, T. E., and Boyer, J. S. (2006) Ann. Bot., 98, 93–105.PubMedCrossRefGoogle Scholar
  116. 116.
    Morris, S., Hanna, S., and Miles, M. J. (2004) Nanotechnology, 15, 1296–1301.CrossRefGoogle Scholar
  117. 117.
    Whitney, S. E. C., Brigham, J. E., Darke, A. H., Reid, J. S. G., and Gidley, M. J. (1998) Carbohydr. Res., 307, 299–309.CrossRefGoogle Scholar
  118. 118.
    Girault, R., Bert, F., Rihouey, C., Jauneau, A., Morvan, C., and Jarvis, M. (1997) Int. J. Biol. Macromol., 21, 179–188.PubMedCrossRefGoogle Scholar
  119. 119.
    Cosgrove, D. J. (1997) Plant Cell, 9, 1031–1041.PubMedCrossRefGoogle Scholar
  120. 120.
    Ray, P. M. (1967) J. Cell Biol., 35, 659–674.PubMedCrossRefGoogle Scholar
  121. 121.
    Emons, A. M. C., and Mulder, B. M. (2000) Trends Plant Sci., 5, 35–40.PubMedCrossRefGoogle Scholar
  122. 122.
    Wasteneys, G. O. (2002) J. Cell Sci., 115, 1345–1354.PubMedGoogle Scholar
  123. 123.
    Baskin, T. I., Beemster, G. T. S., Judy-March, J. E., and Marga, F. (2004) Plant Physiol., 135, 2279–2290.PubMedCrossRefGoogle Scholar
  124. 124.
    Fry, S. C., Smith, R. C., Renwick, K. F., Martin, D. J., Hodge, S. K., and Matthews, K. J. (1992) Biochem. J., 282, 821–828.PubMedGoogle Scholar
  125. 125.
    Fry, S. C. (2004) Phytochem. Rev., 3, 97–111.CrossRefGoogle Scholar
  126. 126.
    Edelmann, H. G., and Fry, S. C. (1992) Plant Physiol., 100, 993–997.PubMedCrossRefGoogle Scholar
  127. 127.
    Schroder, R., Wegrzyn, T. F., Bolitho, K. M., and Redgwell, R. J. (2004) Planta, 219, 590–600.PubMedCrossRefGoogle Scholar
  128. 128.
    Vincken, J. P., Schols, H. A., Oomen, R. J., McCann, M. C., Ulvskov, P., Voragen, A. G., and Visser, R. G. (2003) Plant Physiol., 132, 1781–1789.PubMedCrossRefGoogle Scholar
  129. 129.
    McNeil, M., Darvill, A., Fry, S., and Albersheim, P. (1984) Ann. Rev. Biochem., 53, 625–663.PubMedCrossRefGoogle Scholar
  130. 130.
    York, W. S., Oates, J. E., van Halbeck, H., Darvill, A. G., Albersheim, P., Tiller, P. R., and Del, A. (1988) Carbohydr. Res., 173, 113–132.PubMedCrossRefGoogle Scholar
  131. 131.
    Brummell, D. A., and Harpster, M. H. (2001) Plant Mol. Biol., 47, 311–340.PubMedCrossRefGoogle Scholar
  132. 132.
    Roberts, J. A., Elliott, K. A., and Gonzalez-Carranza, Z. H. (2002) Ann. Rev. Plant Biol., 53, 131–158.CrossRefGoogle Scholar
  133. 133.
    Cosgrove, D. J. (2005) Nat. Rev. Mol. Cell Biol., 6, 850–861.PubMedCrossRefGoogle Scholar
  134. 134.
    Gorshkova, T. A., Chemikosova, S. B., Salnikov, V. V., Pavlencheva, N. V., Gurjanov, O. P., Stolle-Smits, T., and van Dam, J. E. G. (2004) Ind. Crops Prod., 19, 217–224.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • T. A. Gorshkova
    • 1
    Email author
  • P. V. Mikshina
    • 1
  • O. P. Gurjanov
    • 1
  • S. B. Chemikosova
    • 1
  1. 1.Kazan Institute of Biochemistry and Biophysics, Kazan Scientific CenterRussian Academy of SciencesKazanRussia

Personalised recommendations