Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 12, pp 1393–1399 | Cite as

Novel family of human transposable elements formed due to fusion of the first exon of gene MAST2 with retrotransposon SVA

  • O. B. Bantysh
  • A. A. Buzdin
Accelerated Publication

Abstract

We identified a novel human-specific family of transposable elements that consists of fused copies of the CpG-island containing the first exon of gene MAST2 and retrotransposon SVA. We propose a mechanism for the formation of this family termed CpG-SVA, comprising 5′-transduction by an SVA insert. After the divergence of human and chimpanzee ancestor lineages, retrotransposon SVA has inserted into the first intron of gene MAST2 in the sense orientation. Due to splicing of an aberrant RNA driven by MAST2 promoter, but terminally processed using SVA polyadenylation signal, the first exon of MAST2 has fused to a spliced 3′-terminal fragment of SVA retrotransposon. The above ancestor CpG-SVA element due to retrotranspositions of its own copies has formed a novel family represented in the human genome by 76 members. Recruitment of a MAST2 CpG island was most likely beneficial to the hybrid retrotransposons because it could significantly increase retrotransposition frequency. Also, we show that human L1 reverse transcriptase adds an extra cytosine residue to the 3′ terminus of the nascent first strand of cDNA.

Key words

molecular evolution human DNA retroelements genomic transposable elements regulation of transcription 

Abbreviations

REs

retroelements

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baltimore, D. (1970) Nature, 226, 1209–1211.CrossRefPubMedGoogle Scholar
  2. 2.
    Temin, H. M., and Mizutani, S. (1970) Nature, 226, 1211–1213.CrossRefPubMedGoogle Scholar
  3. 3.
    Eickbush, T. H. (1997) Science, 277, 911–912.CrossRefPubMedGoogle Scholar
  4. 4.
    Buzdin, A. A. (2004) Cell. Mol. Life Sci., 61, 2046–2059.CrossRefPubMedGoogle Scholar
  5. 5.
    Mills, R. E., Bennett, E. A., Iskow, R. C., Luttig, C. T., Tsui, C., Pittard, W. S., and Devine, S. E. (2006) Am. J. Hum. Genet., 78, 671–679.CrossRefPubMedGoogle Scholar
  6. 6.
    Buzdin, A. (2007) Sci. World J., 7, 1848–1868.Google Scholar
  7. 7.
    Jurka, J. (1997) Proc. Natl. Acad. Sci. USA, 94, 1872–1877.CrossRefPubMedGoogle Scholar
  8. 8.
    Kazazian, H. H., Jr., and Goodier, J. L. (2002) Cell, 110, 277–280.CrossRefPubMedGoogle Scholar
  9. 9.
    Furano, A. V. (2000) Progr. Nucleic Acid Res. Mol. Biol., 64, 255–294.CrossRefGoogle Scholar
  10. 10.
    Ullu, E., and Tschudi, C. (1984) Nature, 312, 171–172.CrossRefPubMedGoogle Scholar
  11. 11.
    Kramerov, D. A., and Vassetzky, N. S. (2005) Int. Rev. Cytol., 247, 165–221.CrossRefPubMedGoogle Scholar
  12. 12.
    Wang, H., Xing, J., Grover, D., Hedges, D. J., Han, K., Walker, J. A., and Batzer, M. A. (2005) J. Mol. Biol., 354, 994–1007.CrossRefPubMedGoogle Scholar
  13. 13.
    Goodier, J. L., and Kazazian, H. H. (2008) Cell, 135, 23–35.CrossRefPubMedGoogle Scholar
  14. 14.
    Xing, J., Wang, H., Belancio, V. P., Cordaux, R., Deininger, P. L., and Batzer, M. A. (2006) Proc. Natl. Acad. Sci. USA, 103, 17608–17613.CrossRefPubMedGoogle Scholar
  15. 15.
    Babushok, D. V., Ostertag, E. M., and Kazazian, H. H. (2007) Cell. Mol. Life Sci., 64, 542–554.CrossRefPubMedGoogle Scholar
  16. 16.
    Buzdin, A., Gogvadze, E., Kovalskaya, E., Volchkov, P., Ustyugova, S., Illarionova, A., Fushan, A., Vinogradova, T., and Sverdlov, E. (2003) Nucleic Acids Res., 31, 4385–4390.CrossRefPubMedGoogle Scholar
  17. 17.
    Gogvadze, E., Barbisan, C., Lebrun, M. H., and Buzdin, A. (2007) BMC Genom., 8, 360.CrossRefGoogle Scholar
  18. 18.
    Brosius, J. (1999) Genetica, 107, 209–238.CrossRefPubMedGoogle Scholar
  19. 19.
    Jurka, J., Kapitonov, V. V., Pavlicek, A., Klonowski, P., Kohany, O., and Walichiewicz, J. (2005) Cytogenet. Genome Res., 110, 462–467.CrossRefPubMedGoogle Scholar
  20. 20.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) J. Mol. Biol., 215, 403–410.PubMedGoogle Scholar
  21. 21.
    Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) Nucleic Acids Res., 22, 4673–4680.CrossRefPubMedGoogle Scholar
  22. 22.
    Felsenstein, J. (1993) Distributed by the author, Department of Genetics, University of Washington, Seattle.Google Scholar
  23. 23.
    Hancks, D., Ewing, A., Chen, J. E., Tokunaga, K., and Kazazian, H. (2009) Genome Res., August 3 (E-pub ahead of print).Google Scholar
  24. 24.
    Damert, A., Raiz, J., Horn, A., Lower, J., Wang, H., Xing, J., Batzer, M., Lower, R., and Schumann, G. (2009) Genome Res., July 27 (E-pub ahead of print).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations