Biochemistry (Moscow)

, Volume 74, Issue 12, pp 1363–1367 | Cite as

Effect of solute hydrogen bonding capacity on osmotic stability of lysosomes

  • Shu-Jing Hao
  • Jun-Fang Hou
  • Guo-Jiang ZhangEmail author


The effect of solute hydrogen bonding capacity on the osmotic stability of lysosomes was examined through measurement of free enzyme activity of lysosomes after their incubation in sucrose and poly(ethylene glycol) (PEG) (1500–6000 Da molecular mass) media. Free enzyme activity of the lysosomes was less in the PEG medium than that in the sucrose medium under the same hypotonic condition. The lysosomal enzyme latency loss decreased with increasing hydrogen bonding capacity of the solute. In addition, the lysosomes lost less latency at lower incubation temperature. The results indicate that solute hydrogen bonding capacity plays an important role in the osmotic protection of an incubation medium to lysosomes.

Key words

hydrogen bonding capacity lysosomal osmotic stability lysosome 



poly(ethylene glycol)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lloyd, J. B., and Forster, S. (1986) Trends Biol. Sci., 11, 365–368.CrossRefGoogle Scholar
  2. 2.
    Iveson, G. P., Bird, S. J., and Lloyd, J. B. (1989) Biochem. J., 261, 451–456.PubMedGoogle Scholar
  3. 3.
    Lloyd, J. B. (1992) in Pathophysiology of Lysosomal Transport (Thoene, J. G., ed.) Chap. 7, CRC Press, Boca Raton, pp. 295–308.Google Scholar
  4. 4.
    Jonas, A. J., Smith, M. L., Allison, W. S., Laikind, P. K., Greene, A. A., and Schneider, J. A. (1983) J. Biol. Chem., 258, 11727–11730.PubMedGoogle Scholar
  5. 5.
    Yamada, H., Hayashi, H., and Natori, Y. (1984) J. Biochem., 95, 1155–1160.PubMedGoogle Scholar
  6. 6.
    Greene, A. A., and Schneider, J. S. (1992) in Pathophysiology of Lysosomal Transport (Thoene, J. G., ed.) Chap. 2, CRC Press, Boca Raton, pp. 7–44.Google Scholar
  7. 7.
    Bird, S. J., Forster, S., and Lloyd, J. B. (1987) Biochem. J., 245, 929–931.PubMedGoogle Scholar
  8. 8.
    Diamond, J. M., and Wright, E. M. (1969) Annu. Rev. Physiol., 31, 581–646.CrossRefPubMedGoogle Scholar
  9. 9.
    Ross, P. D., and Rekharsky, M. V. (1996) Biophys. J., 71, 2144–2154.CrossRefPubMedGoogle Scholar
  10. 10.
    Rowlinson, J. S. (1957) in Hydrogen Bonding (Hadzi, D., ed.) Pergamon Press, London, pp. 423–427.Google Scholar
  11. 11.
    Hammel, H. T., and Schlegel, W. M. (2005) Cell Biochem. Biophys., 42, 277–345.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhao, Z. J., Wang, Q., Zhang, L., and Wu, T. (2008) J. Phys. Chem. B, 112, 7515–7521.CrossRefPubMedGoogle Scholar
  13. 13.
    Eggena, P. (1983) Am. J. Physiol., 244, C44–9.PubMedGoogle Scholar
  14. 14.
    Avdeef, A., and Tsinman, O. (2006) Eur. J. Pharm. Sci., 28, 43–50.CrossRefPubMedGoogle Scholar
  15. 15.
    Orme, F. W., Moronne, M. M., and Macey, R. I. (1988) J. Membr. Biol., 104, 57–68.CrossRefPubMedGoogle Scholar
  16. 16.
    Deamer, D. W., and Bramhall, J. (1986) Chem. Phys. Lipids, 40, 167–188.CrossRefPubMedGoogle Scholar
  17. 17.
    Sharma, M., Resta, R., and Car, R. (2007) Rev. Lett., 98, 247401.CrossRefGoogle Scholar
  18. 18.
    Yoshii, N., Miura, S., and Okazaki, S. (2001) Lett., 345, 195–200.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of BiophysicsChinese Academy of SciencesBeijingPR China
  2. 2.Graduate SchoolChinese Academy of SciencesBeijingPR China
  3. 3.School of Physical Science and Technology Sichuan UniversityChengduPR China

Personalised recommendations