Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 12, pp 1350–1355 | Cite as

Microbial origin of phenylcarboxylic acids in the human body

  • N. V. BeloborodovEmail author
  • A. S. Khodakova
  • I. T. Bairamov
  • A. Yu. Olenin
Article

Abstract

In previous studies we demonstrated increased amounts of phenylcarboxylic acids (PCA) in serum of patients with sepsis. This observation prompted the present study of the ability of the human microbiome bacteria to produce PCA in vitro. PCA were detected in culture media by gas chromatography-mass spectrometry. Increased amounts of phenyllactic and p-hydroxyphenyllactic acids were produced by Klebsiella pneumonia, Escherichia coli, and Staphylococcus aureus. Certain strict anaerobes (bifidobacteria, lactobacteria, eubacteria) have also been found to actively produce these PCA, but these bacteria are not etiologically linked to sepsis. Thus our results demonstrate the ability of sepsis-related bacteria to produce PCA and provide experimental support for the theory that the accumulation of PCA in the blood of patients with sepsis results from microbial degradation of phenylalanine and tyrosine.

Key words

phenylcarboxylic acids phenyllactic acid p-hydroxyphenyllactic acid endogenous microflora facultative and strict anaerobes sepsis gas chromatography-mass spectrometry 

Abbreviations

GC-MS

gas chromatography-mass spectrometry

HMDB

Human Metabolome Database

HPAA

p-hydroxyphenylacetic acid

HPLA

p-hydroxyphenyllactic acid

HPPA

p-hydroxyphenylpropionic acid

PAA

phenylacetic acid

PCA

phenylcarboxylic acid

PLA

phenyllactic acid

PPA

phenylpropionic acid

TMS

trimethylsilyl

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., and Gordon, J. I. (2005) Science, 307, 1915–1920.CrossRefPubMedGoogle Scholar
  2. 2.
    Beloborodova, N. V., and Osipov, G. A. (1999) Vest. RAMN, 7, 25–31.Google Scholar
  3. 3.
    Wikoff, W. R., Anfora, A. T., Liu, J., Schultz, P. G., Lesley, S. A., Peters, E. C., and Suizdak, G. (2009) Proc. Natl. Acad. Sci. USA, 106, 3698–3703.CrossRefPubMedGoogle Scholar
  4. 4.
    Beloborodova, N. V., Arkhipova, A. S., Beloborodov, D. M., Boyko, N. B., Melko, A. I., and Olenin, A. Yu. (2006) Klin. Lab. Diagn., No. 2, 3–6.Google Scholar
  5. 5.
    Khodakova, A., and Beloborodova, N. (2007) Crit. Care, 11(Suppl. 4), 5.CrossRefGoogle Scholar
  6. 6.
    Fedotseva, N. I., Kazakov, R. E., Kondrashova, M. N., and Beloborodova, N. V. (2008) Toxicol. Lett., 180, 182–188.CrossRefGoogle Scholar
  7. 7.
    Levchuk, A. A., Palmina, N. P., and Raushenbakh, M. O. (1987) Byul. Eksp. Biol. Med., 104, 77–79.Google Scholar
  8. 8.
    Liu, J., Li, J., and Sidell, N. (2007) Cancer Chemother. Pharmacol., 59, 217–225.CrossRefPubMedGoogle Scholar
  9. 9.
    Bourgeau, G., and Mayrand, D. (1983) Can. J. Microbiol., 29, 1184–1189.PubMedGoogle Scholar
  10. 10.
    Mayrand, D. (1979) Can. J. Microbiol., 25, 927–928.PubMedCrossRefGoogle Scholar
  11. 11.
    Moss, C. W., Lambert, M. A., and Goldsmith, D. J. (1970) Appl. Microbiol., 19, 375–378.PubMedGoogle Scholar
  12. 12.
    Smith, E. A., and Macfarlane, G. T. (1996) J. Appl. Bacteriol., 81, 288–302.PubMedGoogle Scholar
  13. 13.
    Deutsch, J. C. (1997) J. Chromatogr. B Biomed. Sci. Appl., 690, 1–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Curtius, H.-Ch., Vollmin, J. A., and Baerlocher, K. (1973) Anal. Chem., 45, 1107–1110.CrossRefGoogle Scholar
  15. 15.
    Arias-Barrau, E., Olivera, E. R., Luengo, J. M., Fernandez, C., Galan, B., Garcia, J. L., Diaz, E., and Minambres, B. (2004) J. Bacteriol., 186, 5062–5077.CrossRefPubMedGoogle Scholar
  16. 16.
    Sparnins, V. L., and Chapman, P. J. (1976) J. Bacteriol., 127, 362–366.PubMedGoogle Scholar
  17. 17.
    Lambert, M. A., and Moss, C. W. (1980) J. Clin. Microbiol., 12, 291–293.PubMedGoogle Scholar
  18. 18.
    Mao, L. F., Chu, C., and Schulz, H. (1994) Biochemistry, 33, 3320–3326.CrossRefPubMedGoogle Scholar
  19. 19.
    Clemens, P. C., Schunemann, M. H., Hoffman, G. F., and Kohlschutter, A. (1990) J. Inher. Metab. Dis., 13, 227–228.CrossRefPubMedGoogle Scholar
  20. 20.
    Nakamura, K., Tanaka, Y., Mitsubuchi, H., and Endo, F. (2007) J. Nutr., 137, 1556S–1560S.PubMedGoogle Scholar
  21. 21.
    Kopple, J. D. (2007) J. Nutr., 137, 1586S–1590S.PubMedGoogle Scholar
  22. 22.
    Leibich, H. M., and Pickert, A. (1985) J. Chromatogr., 338, 25–32.CrossRefGoogle Scholar
  23. 23.
    Haan, E., Brown, G., Bankier, A., Mitchell, D., Hunt, S., and Barnes, G. (1985) Eur. J. Nutr., 144, 63–65.Google Scholar
  24. 24.
    Shenderov, B. A. (1998) Medical Microbial Etiology and Functional Nutrition [in Russian], Vols. 1–3, Grant, Moscow.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • N. V. Beloborodov
    • 1
    Email author
  • A. S. Khodakova
    • 1
  • I. T. Bairamov
    • 1
  • A. Yu. Olenin
    • 1
  1. 1.Bakoulev Scientific Center for Cardiovascular SurgeryRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations