Biochemistry (Moscow)

, Volume 74, Issue 12, pp 1320–1327 | Cite as

Characterization of physical interaction between replication initiator protein DnaA and replicative helicase from Mycobacterium tuberculosis H37Rv

  • Yunchang Xie
  • Zheng-Guo HeEmail author


In the pathogenic Mycobacterium tuberculosis H37Rv, the causative agent of tuberculosis, the genetic and biochemical mechanisms for initiation of DNA replication are largely unknown. In the present study, we have characterized the physical interactions between M. tuberculosis DnaA and DnaB using both in vivo methods, such as bacterial two-hybrid assays, and in vitro techniques, such as surface plasmon resonance (SPR) and Pull-down/Western blotting. The full-length N-terminus (1–206 residues) of DnaB was found to interact with DnaA, while the shorter N-terminal domain of DnaB (1–125 residues), which lacked the linker region, did not. Further SPR and electrophoretic mobility shift assays indicated that the N-terminus (1–206 residues) of DnaB also had a critical role in regulating DnaA complex formation at the origin of replication (OriC). This regulatory effect was not obviously observed for DNA substrates containing only two DnaA-boxes. This is the first report showing a physical interaction between DnaA and replicative helicase DnaB from M. tuberculosis and the role in subsequent DnaA-OriC interactions. The findings reported here further the understanding of the regulatory mechanisms for initiation of DNA replication in this important human pathogen.

Key words

Mycobacterium tuberculosis DnaB replication origin DnaA OriC 







nitrilotriacetic acid chip


origin of replication


polymerase chain reaction


streptavidin chip


surface plasmon resonance




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kornberg, A., and Baker, T. A. (1992) DNA Replication (Freeman, W. H., ed.) 2nd Edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  2. 2.
    Baker, T., and Bell, S. P. (1998) Cell, 92, 295–305.CrossRefPubMedGoogle Scholar
  3. 3.
    Patrick, M. S., Madeleine, J. H., and Nicholas, E. D. (2005) IUBMB Life, 57, 5–12.CrossRefGoogle Scholar
  4. 4.
    Konieczny, I. (2003) EMBO Rep., 4, 37–41.CrossRefPubMedGoogle Scholar
  5. 5.
    Seitz, H., Weigel, C., and Messer, W. (2000) Mol. Microbiol., 37, 1270–1279.CrossRefPubMedGoogle Scholar
  6. 6.
    Bailey, S., Eliason, W. K., and Steitz, T. A. (2007) Nucleic Acids Res., 35, 4728–4736.CrossRefPubMedGoogle Scholar
  7. 7.
    Simmons, L. A., Felczak, M., and Kaguni, J. M. (2004) Mol. Microbiol., 49, 849–858.CrossRefGoogle Scholar
  8. 8.
    Qin, M. H., Madiraju, M. V., and Rajagopalan, M. (1999) Gene, 233, 121–130.CrossRefPubMedGoogle Scholar
  9. 9.
    Dziadek, J., Rajagopalan, M., Parish, T., Kurepina, N., Greendyke, R., Kreiswirth, B. N., and Madiraju, M. V. (2002) J. Bacteriol., 184, 3848–3855.CrossRefPubMedGoogle Scholar
  10. 10.
    Zawilak-Pawlik, A., Kois, A., Majka, J., Jakimowicz, D., Smulczyk-Krawczyszyn, A., Messer, W., and Zakrzewska-Czerwinska, J. (2005) Biochem. J., 389, 471–481.CrossRefPubMedGoogle Scholar
  11. 11.
    Madiraju, M. V. V. S., Moomey, M., Neuenschwander, P. F., Muniruzzaman, S., Yamamoto, K., Grimwade, J. E., and Rajagopalan, M. (2006) Mol. Microbiol., 59, 1876–1890.CrossRefPubMedGoogle Scholar
  12. 12.
    Biswas, T., and Tsodikov, O. V. (2008) FEBS J., 275, 3064–3071.CrossRefPubMedGoogle Scholar
  13. 13.
    Wayne, L. G. (1994) Eur. J. Clin. Microbiol. Infect. Dis., 13, 908–914.CrossRefPubMedGoogle Scholar
  14. 14.
    Fol, M., Chauhan, A., Nair, N. K., Maloney, E., Moomey, M., Jagannath, C., Madiraju, M. V., and Rajagopalan, M. (2006) Mol. Microbiol., 60, 643–657.CrossRefPubMedGoogle Scholar
  15. 15.
    Krinos, C. M., Coyne, M. J., Weinacht, K. G., Tzianabos, A. O., Kasper, D. L., and Comstock, L. E. (2001) Nature, 414, 555–558.CrossRefPubMedGoogle Scholar
  16. 16.
    Rezende, L. F., Hollis, T., Ellenberger, T., and Richardson, C. C. (2002) J. Biol. Chem., 277, 50643–50653.CrossRefPubMedGoogle Scholar
  17. 17.
    Guo, M., Feng, H., Zhang, J., Wang, W., Wang, Y., Li, Y., Gao, C., Chen, H., Feng, Y., and He, Z. G. (2009) Genome Res., 19, 1301–1308.CrossRefPubMedGoogle Scholar
  18. 18.
    Kellenberger-Gujer, G., Podhajska, A. J., and Caro, L. (1978) Mol. Gen. Genet., 162, 9–16.CrossRefPubMedGoogle Scholar
  19. 19.
    Weigel, C., Schmidt, A., Seitz, H., Tuengler, D., Welzeck, M., and Messer, W. (1999) Mol. Microbiol., 34, 53–66.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina

Personalised recommendations