Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 12, pp 1315–1319 | Cite as

Vanillic acid as a novel specific inhibitor of snake venom 5′-nucleotidase: A pharmacological tool in evaluating the role of the enzyme in snake envenomation

  • B. L. Dhananjaya
  • A. Nataraju
  • C. D. Raghavendra Gowda
  • B. K. Sharath
  • C. J. M. D’souzaEmail author
Article

Abstract

Vanillic acid has been investigated for its inhibitory effect on Naja naja, Daboia russellii, and Trimeresurus malabaricus venom 5′-nucleotidase activity. Trimeresurus malabaricus venom 5′-nucleotidase activity was 1.3- and 8.0-fold higher than that of N. naja and D. russellii venoms, respectively. Substrate specificity studies showed that for all the venoms tested, 5′-AMP was the preferred substrate for 5′-nucleotidase. This indicates the central role of adenosine in snake envenomation. Vanillic acid selectively and specifically inhibited 5′-nucleotidase activity among several enzymes present in the three venoms tested. The inhibitor was competitive, as the inhibition was relieved by increased substrate concentration. It appears that the COOH group in vanillic acid is the determining factor for inhibition as vanillin, a structurally similar compound with respect to vanillic acid, had no inhibitory activity. This study for the first time exemplifies vanillic acid as a pharmacological tool in evaluating the role of 5′-nucleotidase in snake envenomation.

Key words

5′-nucleotidase Naja naja Daboia russellii Trimeresurus malabaricus vanillic acid purines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aird, S. D. (2002) Toxicon, 40, 335–393.CrossRefPubMedGoogle Scholar
  2. 2.
    Aird, S. D. (2005) Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 140, 109–126.CrossRefPubMedGoogle Scholar
  3. 3.
    Tan, N. H., and Tan, C. S. (1988) Toxicon, 26, 989–996.CrossRefGoogle Scholar
  4. 4.
    Tan, N. H., and Tan, C. S. (1989) Toxicon, 27, 697–702.CrossRefPubMedGoogle Scholar
  5. 5.
    Tan, N. H., and Tan, C. S. (1987) Toxicon, 25, 1249–1253.CrossRefPubMedGoogle Scholar
  6. 6.
    Tan, N. H., and Hj, M. N. (1989) Toxicon, 27, 689–695.CrossRefPubMedGoogle Scholar
  7. 7.
    Dimitrov, G. D., and Kankonkar, R. C. (1968) Toxicon, 5, 213–221.CrossRefPubMedGoogle Scholar
  8. 8.
    Boffa, M. C., and Boffa, G. A. (1974) Biochim. Biophys. Acta, 354, 275–290.PubMedGoogle Scholar
  9. 9.
    Ouyang, C., and Huang, T. F. (1983) Toxicon, 21, 491–501.CrossRefPubMedGoogle Scholar
  10. 10.
    Dhananjaya, B. L., Nataraju, A., Rajesh, R., Raghavendra Gowda, C. D., Sharath, B. K., Vishwanath, B. S., and D’souza, C. J. M. (2006) Toxicon, 48, 411–421.CrossRefPubMedGoogle Scholar
  11. 11.
    Lazarovici, P., and Lelkes, P. I. (1992) J. Pharmacol. Exp. Ther., 263, 1317–1326.PubMedGoogle Scholar
  12. 12.
    Ferry, G., Ubeaud, C., Mozo, J., Pean, C., Hennig, P., Rodriguez, M., Scoul, C., Bonnaud, A., Nosjean, O., Galizzi, J. P., Delagrange, P., Renard, P., Volland, J. P., Yous, S., Lesieur, D., and Boutin, J. A. (2004) Eur. J. Biochem., 271, 418–428.CrossRefPubMedGoogle Scholar
  13. 13.
    Erion, M. D., van Poelje, P. D., Dang, Q., Kasibhatla, S. R., Potter, S. C., Reddy, M. R., Reddy, K. R., Jiang, T., and Lipscomb, W. N. (2005) Proc. Natl. Acad. Sci. USA, 102, 7970–7975.CrossRefPubMedGoogle Scholar
  14. 14.
    Avruch, J., and Wallach, D. F. (1971) Biochim. Biophys. Acta, 233, 334–347.CrossRefPubMedGoogle Scholar
  15. 15.
    Vishwanath, B. S., Frey, F. J., Bradbury, M. J., Dallman, M. F., and Frey, B. M. (1993) J. Clin. Invest., 92, 1974–1980.CrossRefPubMedGoogle Scholar
  16. 16.
    Murata, J., Satake, M., and Suzuki, T. (1963) J. Biochem., 53, 431–443.Google Scholar
  17. 17.
    Ouyang, C., and Teng, C. M. (1976) Biochim. Biophys. Acta, 420, 298–308.PubMedGoogle Scholar
  18. 18.
    Reissig, J. L., Stominger, J. L., and Leloir, L. F. (1955) J. Biol. Chem., 217, 959–969.PubMedGoogle Scholar
  19. 19.
    Worthington Enzyme Manual (1977) Worthington Biochemical Corporation, USA, pp. 49–50.Google Scholar
  20. 20.
    Lo, T. B., Chen, Y. H., and Lee, C. Y. (1966) J. Chinese Chem. Soc. Ser. II, 13, 25–37.Google Scholar
  21. 21.
    Johnson, M. S., Patel, S., Bruckner, E. F., and Collins, D. A. (1999) Rheumatology, 38, 391–396.CrossRefPubMedGoogle Scholar
  22. 22.
    Bates, P. A. (1993) FEMS Microbiol. Lett., 107, 53–58.CrossRefPubMedGoogle Scholar
  23. 23.
    Roknabadi, S. M., Bose, S. K., and Taneja, V. (1999) Biochim. Biophys. Acta, 1433, 272–280.PubMedGoogle Scholar
  24. 24.
    Devi, A., Ashgar, S. S., and Sarkar, N. K. (1966) Mem. Inst. Butantan, 33, 943–949.PubMedGoogle Scholar
  25. 25.
    Hink, W. F., Romstedt, K. J., Burke, J. W., Doskotch, R. W., and Feller, D. R. (1989) Inflammation, 13, 175–184.CrossRefPubMedGoogle Scholar
  26. 26.
    Horni, A., Weickmann, D., and Hesse, M. (2001) Toxicon, 39, 425–428.CrossRefPubMedGoogle Scholar
  27. 27.
    Rash, L. D., King, R. G., and Hodgson, W. C. (2000) Toxicon, 38, 1111–1127.CrossRefPubMedGoogle Scholar
  28. 28.
    Graham, R. L., McClean, S., O’Kane, E. J., Theakston, D., and Shaw, C. (2005) Biochem. Biophys. Res. Commun., 333, 88–94.CrossRefPubMedGoogle Scholar
  29. 29.
    Lumsden, N. G., Fry, B. G., Ventura, S., Kini, R. M., and Hodgson, W. C. (2004) Auton Autacoid Pharmacol., 24, 107–113.CrossRefPubMedGoogle Scholar
  30. 30.
    Mannherz, H. G., and Magener, M. (1979) FEBS Lett., 103, 77–80.CrossRefPubMedGoogle Scholar
  31. 31.
    Francis, B., Seebart, C., and Kaiser, I. I. (1992) Toxicon, 30, 1239–1246.CrossRefPubMedGoogle Scholar
  32. 32.
    Uchino, K., Ogawara, H., Akiyama, T., and Fukuchi, A. (1985) J. Antibiot. (Tokyo), 38, 1564–1567.Google Scholar
  33. 33.
    Toukairin, T., Uchino, K., Iwamoto, M., Murakami, S., Tatebayashi, T., Ogawara, H., and Tonosaki, Y. (1991) Chem. Pharm. Bull. (Tokyo), 39, 1480–1483.Google Scholar
  34. 34.
    Okonogi, T., Hattori, Z., Ogiso, A., and Mitsui, S. (1979) Toxicon, 17, 524–527.CrossRefPubMedGoogle Scholar
  35. 35.
    Rossomando, E. F., Cordis, G. A., and Markham, G. D. (1983) Arch. Biochem. Biophys., 220, 71–78.CrossRefPubMedGoogle Scholar
  36. 36.
    Jorge da Silva, N., Jr., and Aird, S. D. (2001) Comp. Biochem. Physiol. C. Toxicol. Pharmacol., 128, 425–456.CrossRefPubMedGoogle Scholar
  37. 37.
    Dirscherl, W., and Wirtzfeld, A. (1964) Hoppe Seylers Z. Physiol. Chem., 336, 81–90.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • B. L. Dhananjaya
    • 1
  • A. Nataraju
    • 1
  • C. D. Raghavendra Gowda
    • 1
  • B. K. Sharath
    • 1
  • C. J. M. D’souza
    • 1
    Email author
  1. 1.Department of Studies in BiochemistryUniversity of MysoreManasagangothri, MysoreIndia

Personalised recommendations