Advertisement

Biochemistry (Moscow)

, 74:1253 | Cite as

Heavy metal ions affect the activity of DNA glycosylases of the Fpg family

  • I. R. Grin
  • P. G. Konorovsky
  • G. A. Nevinsky
  • D. O. ZharkovEmail author
Article

Abstract

Prokaryotic enzymes formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease VIII (Nei) and their eukaryotic homologs NEIL1, NEIL2, and NEIL3 define the Fpg family of DNA glycosylases, which initiate the process of repair of oxidized DNA bases. The repair of oxidative DNA lesions is known to be impaired in vivo in the presence of ions of some heavy metals. We have studied the effect of salts of several alkaline earth and transition metals on the activity of Fpg-family DNA glycosylases in the reaction of excision of 5,6-dihydrouracil, a typical DNA oxidation product. The reaction catalyzed by NEIL1 was characterized by values K m = 150 nM and k cat = 1.2 min−1, which were in the range of these constants for excision of other damaged bases by this enzyme. NEIL1 was inhibited by Al3+, Ni2+, Co2+, Cd2+, Cu2+, Zn2+, and Fe2+ in Tris-HCl buffer and by Cd2+, Zn2+, Cu2+, and Fe2+ in potassium phosphate buffer. Fpg and Nei, the prokaryotic homologs of NEIL1, were inhibited by the same metal ions as NEIL1. The values of I50 for NEIL1 inhibition were 7 µM for Cd2+, 16 µM for Zn2+, and 400 µM for Cu2+. The inhibition of NEIL1 by Cd2+, Zn2+, and Cu2+ was at least partly due to the formation of metal-DNA complexes. In the case of Cd2+ and Cu2+, which preferentially bind to DNA bases rather than phosphates, the presence of metal ions caused the enzyme to lose the ability for preferential binding to damaged DNA. Therefore, the inhibition of NEIL1 activity in removal of oxidative lesions by heavy metal ions may be a reason for their comutagenicity under oxidative stress.

Key words

oxidative stress DNA repair DNA glycosylases heavy metals 

Abbreviations

AP

apurine-apyrimidine

DHU

5,6-dihy-drouracil

ODN

oligodeoxyribonucleotide

THF

(3-hydroxy-tetrahydrofuran-2-yl)methyl phosphate

References

  1. 1.
    Zenkov, N. K., Lankin, V. Z., and Menshchikova, E. B. (2001) Oxidative Stress: Biochemical and Pathophysiological Aspects [in Russian], MAIK Nauka/Interperiodika, Moscow.Google Scholar
  2. 2.
    Anisimov, V. N. (2003) Molecular and Physiological Mechanisms of Aging [in Russian], Nauka, St. Petersburg.Google Scholar
  3. 3.
    Lindahl, T. (1993) Nature, 362, 709–715.CrossRefPubMedGoogle Scholar
  4. 4.
    Von Sonntag, C. (2006) Free-Radical-Induced DNA Damage and Its Repair: A Chemical Perspective, Springer, Berlin-Heidelberg.Google Scholar
  5. 5.
    Salnikow, K., and Zhitkovich, A. (2008) Chem. Res. Toxicol., 21, 28–44.CrossRefPubMedGoogle Scholar
  6. 6.
    Beyersmann, D., and Hartwig, A. (2008) Arch. Toxicol., 82, 493–512.CrossRefPubMedGoogle Scholar
  7. 7.
    Friedberg, E. C., Walker, G. C., Siede, W., Wood, R. D., Schultz, R. A., and Ellenberger, T. (2006) DNA Repair and Mutagenesis, ASM Press, Washington.Google Scholar
  8. 8.
    Hartwig, A., and Beyersmann, D. (1989) Biol. Trace Elem. Res., 21, 359–365.CrossRefPubMedGoogle Scholar
  9. 9.
    Hirano, T., Yamaguchi, Y., and Kasai, H. (1997) Toxicol. Appl. Pharmacol., 147, 9–14.CrossRefPubMedGoogle Scholar
  10. 10.
    Asmuss, M., Mullenders, L. H. F., and Hartwig, A. (2000) Toxicol. Lett., 112/113, 227–231.CrossRefGoogle Scholar
  11. 11.
    Zharkov, D. O., and Rosenquist, T. A. (2002) DNA Repair, 1, 661–670.CrossRefPubMedGoogle Scholar
  12. 12.
    Blessing, H., Kraus, S., Heindl, P., Bal, W., and Hartwig, A. (2004) Eur. J. Biochem., 271, 3190–3199.CrossRefPubMedGoogle Scholar
  13. 13.
    Zharkov, D. O. (2007) Mol. Biol. (Moscow), 41, 772–786.Google Scholar
  14. 14.
    Sidorenko, V. S., and Zharkov, D. O. (2008) Mol. Biol. (Moscow), 42, 891–903.Google Scholar
  15. 15.
    Hitomi, K., Iwai, S., and Tainer, J. A. (2007) DNA Repair, 6, 410–428.CrossRefPubMedGoogle Scholar
  16. 16.
    Zharkov, D. O., Shoham, G., and Grollman, A. P. (2003) DNA Repair, 2, 839–862.CrossRefPubMedGoogle Scholar
  17. 17.
    Rosenquist, T. A., Zaika, E., Fernandes, A. S., Zharkov, D. O., Miller, H., and Grollman, A. P. (2003) DNA Repair, 2, 581–591.CrossRefPubMedGoogle Scholar
  18. 18.
    Vartanian, V., Lowell, B., Minko, I. G., Wood, T. G., Ceci, J. D., George, S., Ballinger, S. W., Corless, C. L., McCullough, A. K., and Lloyd, R. S. (2006) Proc. Natl. Acad. Sci. USA, 103, 1864–1869.CrossRefPubMedGoogle Scholar
  19. 19.
    O’Connor, T. R., Graves, R. J., de Murcia, G., Castaing, B., and Laval, J. (1993) J. Biol. Chem., 268, 9063–9070.PubMedGoogle Scholar
  20. 20.
    Doublie, S., Bandaru, V., Bond, J. P., and Wallace, S. S. (2004) Proc. Natl. Acad. Sci. USA, 101, 10284–10289.CrossRefPubMedGoogle Scholar
  21. 21.
    Sambrook, J., and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.Google Scholar
  22. 22.
    Rieger, R. A., McTigue, M. M., Kycia, J. H., Gerchman, S. E., Grollman, A. P., and Iden, C. R. (2000) J. Am. Soc. Mass Spectrom., 11, 505–515.CrossRefPubMedGoogle Scholar
  23. 23.
    Gilboa, R., Zharkov, D. O., Golan, G., Fernandes, A. S., Gerchman, S. E., Matz, E., Kycia, J. H., Grollman, A. P., and Shoham, G. (2002) J. Biol. Chem., 277, 19811–19816.CrossRefPubMedGoogle Scholar
  24. 24.
    Dizdaroglu, M., Laval, J., and Boiteux, S. (1993) Biochemistry, 32, 12105–12111.CrossRefPubMedGoogle Scholar
  25. 25.
    Ide, H., Petrullo, L. A., Hatahet, Z., and Wallace, S. S. (1991) J. Biol. Chem., 266, 1469–1477.PubMedGoogle Scholar
  26. 26.
    Kumar, S., Lamarche, B. J., and Tsai, M.-D. (2007) Biochemistry, 46, 3814–3825.CrossRefPubMedGoogle Scholar
  27. 27.
    Zaika, E. I., Perlow, R. A., Matz, E., Broyde, S., Gilboa, R., Grollman, A. P., and Zharkov, D. O. (2004) J. Biol. Chem., 279, 4849–4861.CrossRefPubMedGoogle Scholar
  28. 28.
    Kropachev, K. Y., Zharkov, D. O., and Grollman, A. P. (2006) Biochemistry, 45, 12039–12049.CrossRefPubMedGoogle Scholar
  29. 29.
    Jaruga, P., Birincioglu, M., Rosenquist, T. A., and Dizdaroglu, M. (2004) Biochemistry, 43, 15909–15914.CrossRefPubMedGoogle Scholar
  30. 30.
    Ishchenko, A. A., Vasilenko, N. L., Sinitsina, O. I., Yamkovoy, V. I., Fedorova, O. S., Douglas, K. T., and Nevinsky, G. A. (2002) Biochemistry, 41, 7540–7548.CrossRefPubMedGoogle Scholar
  31. 31.
    Sidorenko, V. S., Mechetin, G. V., Nevinsky, G. A., and Zharkov, D. O. (2008) FEBS J., 275, 3747–3760.CrossRefPubMedGoogle Scholar
  32. 32.
    Asmuss, M., Mullenders, L. H. F., Eker, A., and Hartwig, A. (2000) Carcinogenesis, 21, 2097–2104.CrossRefPubMedGoogle Scholar
  33. 33.
    Jiang, D., Hatahet, Z., Blaisdell, J. O., Melamede, R. J., and Wallace, S. S. (1997) J. Bacteriol., 179, 3773–3782.PubMedGoogle Scholar
  34. 34.
    Zharkov, D. O., Golan, G., Gilboa, R., Fernandes, A. S., Gerchman, S. E., Kycia, J. H., Rieger, R. A., Grollman, A. P., and Shoham, G. (2002) EMBO J., 21, 789–800.CrossRefPubMedGoogle Scholar
  35. 35.
    Hazra, T. K., Izumi, T., Boldogh, I., Imhoff, B., Kow, Y. W., Jaruga, P., Dizdaroglu, M., and Mitra, S. (2002) Proc. Natl. Acad. Sci. USA, 99, 3523–3528.CrossRefPubMedGoogle Scholar
  36. 36.
    Ivanisenko, V. A., Debelov, V. A., Pintus, S. S., Matsokin, A. M., Nikolaev, S. V., Grigorovich, D. A., and Kolchanov, N. A. (2002) in Proc. Third Int. Conf. on Bioinformatics of Genome Regulation and Structure, Novosibirsk, pp. 150–153.Google Scholar
  37. 37.
    Soler-Lopez, M., Malinina, L., Tereshko, V., Zarytova, V., and Subirana, J. A. (2002) J. Biol. Inorg. Chem., 7, 533–538.CrossRefPubMedGoogle Scholar
  38. 38.
    Labiuk, S. L., Delbaere, L. T. J., and Lee, J. S. (2003) J. Biol. Inorg. Chem., 8, 715–720.CrossRefPubMedGoogle Scholar
  39. 39.
    Eichhorn, G. L., and Shin, Y. A. (1968) J. Am. Chem. Soc., 90, 7323–7328.CrossRefPubMedGoogle Scholar
  40. 40.
    Duguid, J., Bloomfield, V. A., Benevides, J., and Thomas, G. J., Jr. (1993) Biophys. J., 65, 1916–1928.CrossRefPubMedGoogle Scholar
  41. 41.
    Vasilescu, D., Ansiss, S., and Mallet, G. (1993) J. Biol. Phys., 19, 199–209.CrossRefGoogle Scholar
  42. 42.
    Bruner, S. D., Norman, D. P. G., and Verdine, G. L. (2000) Nature, 403, 859–866.CrossRefPubMedGoogle Scholar
  43. 43.
    Klaassen, C. D., Liu, J., and Choudhuri, S. (1999) Annu. Rev. Pharmacol. Toxicol., 39, 267–294.CrossRefPubMedGoogle Scholar
  44. 44.
    Thornalley, P. J., and Vasak, M. (1985) Biochim. Biophys. Acta, 827, 36–44.PubMedGoogle Scholar
  45. 45.
    Tamai, K. T., Gralla, E. B., Ellerby, L. M., Valentine, J. S., and Thiele, D. J. (1993) Proc. Natl. Acad. Sci. USA, 90, 8013–8017.CrossRefPubMedGoogle Scholar
  46. 46.
    Skal’ny, A. V. (2004) Chemical Elements in Human Physiology and Ecology [in Russian], Mir, Moscow.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • I. R. Grin
    • 1
  • P. G. Konorovsky
    • 2
  • G. A. Nevinsky
    • 1
    • 2
  • D. O. Zharkov
    • 1
    • 2
    Email author
  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Division of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations