Advertisement

Biochemistry (Moscow)

, 74:1234 | Cite as

Halogenated pyruvate derivatives as substrates of transketolase from Saccharomyces cerevisiae

  • O. A. Esakova
  • L. E. Meshalkina
  • G. A. KochetovEmail author
  • R. Golbik
Article

Abstract

Pyruvate derivatives halogenated at C3 were shown to be donor substrates in the transketolase reaction. No drastic differences between the derivatives were observed in the value of the catalytic constant, whereas the Michaelis constant increased in the following order: Br-pyruvate < Cl-pyruvate < Cl2-pyruvate < F-pyruvate < Br2-pyruvate. The presence of the halogenated pyruvate derivatives increased the affinity of apotransketolase for the coenzyme; of note, the extent of this effect was equal with both of the active centers of the enzyme. In contrast, the presence of any other substrate known to date, including hydroxypyruvate (i.e. pyruvate hydroxylated at C3), induced nonequivalence of the active centers in that they differed in the extent to which the affinity for the coenzyme increased. Consequently, the β-hydroxyl of dihydroxyethylthiamine diphosphate (an intermediate of the transketolase reaction) played an important role in the phenomenon of non-equivalence of the active centers associated with the coenzyme binding. The fundamental possibility was demonstrated of using halogenated pyruvate derivatives as donors of the halogen-hydroxyethyl group in organic synthesis of halogenated carbohydrates involving transketolase.

Key words

transketolase halogenated pyruvate derivatives organic synthesis CD spectra nonequivalence of active centers 

Abbreviations

HP

hydroxypyruvate

ThDP

thiamine diphosphate

TK

transketolase

References

  1. 1.
    Kochetov, G. A. (1982) Meth. Enzymol., 90, 209–223.CrossRefPubMedGoogle Scholar
  2. 2.
    Schenk, G., Duggleby, R. G., and Nixon, P. F. (1998) Int. J. Biochem. Cell Biol., 30, 1297–1318.CrossRefPubMedGoogle Scholar
  3. 3.
    Lindqvist, Y., Schneider, G., Ermler, V., and Sundstrom, M. (1992) EMBO J., 11, 2373–2379.PubMedGoogle Scholar
  4. 4.
    Nikkola, M., Lindqvist, Y., and Schneider, G. (1994) J. Mol. Biol., 238, 387–404.CrossRefPubMedGoogle Scholar
  5. 5.
    Kochetov, G. A., Meshalkina, L. E., and Usmanov, R. A. (1976) Biochem. Biophys. Res. Commun., 69, 839–843.CrossRefPubMedGoogle Scholar
  6. 6.
    Meshalkina, L. E., and Kochetov, G. A. (1979) Biochim. Biophys. Acta, 571, 218–223.PubMedGoogle Scholar
  7. 7.
    Kochetov, G. A., Filippov, P. P., and Usmanov, R. A. (1969) Dokl. Akad. Nauk SSSR, 191, 234–236.Google Scholar
  8. 8.
    Kochetov, G. A., and Philippov, P. P. (1970) Biochem. Biophys. Res. Commun., 38, 930–933.CrossRefPubMedGoogle Scholar
  9. 9.
    Esakova, O. A., Khanova, E. A., Meshalkina, L. E., Golbik, R., Hubner, G., and Kochetov, G. A. (2005) Biochemistry (Moscow), 70, 770–776.CrossRefGoogle Scholar
  10. 10.
    Selivanov, V. A., Kovina, M. V., Kochevova, N. V., Meshalkina, L. E., and Kochetov, G. A. (2003) J. Mol. Catal. B: Enzym., 26, 33–40.CrossRefGoogle Scholar
  11. 11.
    Kochetov, G. A., and Izotova, A. E. (1973) Biokhimiya, 38, 954–957.Google Scholar
  12. 12.
    Kovina, M. V., Selivanov, V. A., Kochevova, N. V., and Kochetov, G. A. (1998) Biochemistry (Moscow), 63, 988–995.Google Scholar
  13. 13.
    Kovina, M. V., Selivanov, V. A., Kochevova, N. V., and Kochetov, G. A. (1997) FEBS Lett., 418, 11–14.CrossRefPubMedGoogle Scholar
  14. 14.
    Heinrich, C., Steffen, H., Janser, P., and Wiss, O. (1972) Eur. J. Biochem., 30, 533–541.CrossRefPubMedGoogle Scholar
  15. 15.
    Heinrich, C., and Schmidt, D. (1973) Experientia, 22, 1226–1227.CrossRefGoogle Scholar
  16. 16.
    Esakova, O. A., Meshalkina, L. E., Golbik, R., Hubner, G., and Kochetov, G. A. (2004) Eur. J. Biochem., 271, 4189–4194.CrossRefPubMedGoogle Scholar
  17. 17.
    Schorken, U., and Sprenger, G. A. (1998) Biochim. Biophys. Acta, 1385, 229–243.PubMedGoogle Scholar
  18. 18.
    Kobori, Y., Myles, D. C., and Whitesides, G. M. (1992) J. Org. Chem., 57, 5899–5907.CrossRefGoogle Scholar
  19. 19.
    Usmanov, R. A., and Kochetov, G. A. (1983) Biokhimiya, 48, 772–778.Google Scholar
  20. 20.
    Morris, K. G., Smith, M. E. B., Turner, N. J., Lilli, M. D., Mitro, R. K., and Woodley, J. M. (1996) Tetrahedron: Asymmetry, 7, 2185–2188.CrossRefGoogle Scholar
  21. 21.
    Shaeri, J., Wohlgemuth, R., and Woodley, J. M. (2006) Org. Proc. Res. Devel., 10, 605–610.CrossRefGoogle Scholar
  22. 22.
    Wikner, C., Meshalkina, L., Nilsson, U., Nikkola, M., Lindqvist, Y., Sundstrom, M., and Schneider, G. (1994) J. Biol. Chem., 269, 32144–32150.PubMedGoogle Scholar
  23. 23.
    Heinrich, C. P., Noack, K., and Wiss, O. (1972) Biochem. Biophys. Res. Commun., 49, 1427–1432.CrossRefPubMedGoogle Scholar
  24. 24.
    Usmanov, R. A., and Kochetov, G. A. (1981) Biochem. Int., 3, 33–39.Google Scholar
  25. 25.
    Schelleneberger, A., and Hubner, G. (1965) Hopp-Seylers Z. Physl. Chem., 343, 189–192.Google Scholar
  26. 26.
    Kochetov, G. A., Usmanov, R. A., and Merzlov, V. P. (1970) FEBS Lett., 9, 265–266.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • O. A. Esakova
    • 1
    • 2
  • L. E. Meshalkina
    • 1
  • G. A. Kochetov
    • 1
    Email author
  • R. Golbik
    • 3
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of Biochemistry and Molecular BiologyPennsylvania State UniversityUniversity ParkUSA
  3. 3.Martin-Luther-University Halle-WittenbergInstitute of Biochemistry/BiotechnologyHalle/SaaleGermany

Personalised recommendations