Advertisement

Biochemistry (Moscow)

, 74:1203 | Cite as

Primary processes of charge separation in reaction centers of YM210L/FM197Y and YM210L mutants of Rhodobacter sphaeroides

  • A. G. YakovlevEmail author
  • L. G. Vasilieva
  • A. Y. Shkuropatov
  • V. A. Shuvalov
Article

Abstract

Difference femtosecond absorption spectroscopy with 20-fsec temporal resolution was applied to study a primary stage of charge separation and transfer processes in reaction centers of YM210L and YM210L/FM197Y site-directed mutants of the purple bacterium Rhodobacter sphaeroides at 90 K. Photoexcitation was tuned to the absorption band of the primary electron donor P at 880 nm. Coherent oscillations in the kinetics of stimulated emission of P* excited state at 940 nm and of anion absorption of monomeric bacteriochlorophyll B A at 1020 nm were monitored. The absence of tyrosine YM210 in RCs of both mutants leads to strong slowing of the primary reaction P* → P+B A and to the absence of stabilization of separated charges in the state P+B A . Mutation FM197Y increases effective mass of an acetyl group of pyrrole ring I in the bacteriochlorophyll molecule PB of the double mutant YM210L/FM197Y by a hydrogen bond with OH-TyrM197 group that leads to a decrease in the frequency of coherent nuclear motions from 150 cm−1 in the single mutant YM210L to ∼100 cm−1 in the double mutant. Oscillations with 100–150 cm−1 frequencies in the dynamics of the P* stimulated emission and in the kinetics of the reversible formation of P+B A state of both mutants reflect a motion of the PB molecule relatively to PA in the area of mutual overlapping of their pyrrole rings I. In the double mutant YM210L/FM197Y the oscillations in the P* emission band and the B A absorption band are conserved within a shorter time ∼0.5 psec (1.5 psec in the YM210L mutant), which may be a consequence of an increase in the number of nuclei forming a wave packet by adding a supplementary mass to the dimer P.

Key words

photosynthesis charge separation reaction center wave packet electron transfer 

Abbreviations

ΔA

absorption changes (light minus dark)

BChl

bacteriochlorophyll

BA and BB

monomeric BChl in A- and B-branch, respectively

BPheo

bacteriopheophytin

HA and HB

BPheo in A- and B-branch, respectively

P

primary electron donor, dimer BChl

PA and PB

BChl molecules forming P

QA and QB

primary and secondary quinone respectively

RC

reaction center

Rba.

Rhodobacter

Rps.

Rhodopseudomonas

References

  1. 1.
    Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H. (1984) J. Mol. Biol., 180, 385–398.CrossRefPubMedGoogle Scholar
  2. 2.
    Allen, J. P., Feher, G., Yeates, T. O., Komiya, H., and Rees, D. C. (1987) Proc. Natl. Acad. Sci. USA, 84, 5730–5734.CrossRefPubMedGoogle Scholar
  3. 3.
    Kirmaier, C., and Holten, D. (1993) in The Photosynthetic Reaction Center (Deisenhofer, J., and Norris, J., eds.) Academic Press, San Diego, pp. 49–70.Google Scholar
  4. 4.
    Woodbury, N. W., and Allen, J. P. (1995) in Anoxygenic Photosynthetic Bacteria (Blankenship, R. E., Madigan, M. T., and Bauer, C. E., eds.) Kluwer Academic Publishers, Dordrecht, pp. 527–557.Google Scholar
  5. 5.
    Shuvalov, V. A., and Yakovlev, A. G. (2003) FEBS Lett., 540, 26–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Vos, M. H., Lambry, J.-C., Robles, S. J., Youvan, D. C., Breton, J., and Martin, J.-L. (1991) Proc. Natl. Acad. Sci. USA, 88, 8885–8889.CrossRefPubMedGoogle Scholar
  7. 7.
    Vos, M. H., Rappaport, F., Lambry, J.-C., Breton, J., and Martin, J.-L. (1993) Nature, 363, 320–325.CrossRefGoogle Scholar
  8. 8.
    Vos, M. H., Jones, M. R., Hunter, C. N., Breton, J., Lambry, J.-C., and Martin, J.-L. (1994) Biochemistry, 33, 6750–6757.CrossRefPubMedGoogle Scholar
  9. 9.
    Vos, M. H., Jones, M. R., Breton, J., Lambry, J.-C., and Martin, J.-L. (1996) Biochemistry, 35, 2687–2692.CrossRefPubMedGoogle Scholar
  10. 10.
    Stanley, R. J., and Boxer, S. G. (1995) J. Phys. Chem., 99, 859–863.CrossRefGoogle Scholar
  11. 11.
    Sporlein, S., Zinth, W., and Wachtveitl, J. (1998) J. Phys. Chem. B, 102, 7492–7496.CrossRefGoogle Scholar
  12. 12.
    Streltsov, A. M., Vulto, S. I. E., Shkuropatov, A. Ya., Hoff, A. J., Aartsma, T. J., and Shuvalov, V. A. (1998) J. Phys. Chem. B, 102, 7293–7298.CrossRefGoogle Scholar
  13. 13.
    Yakovlev, A. G., Shkuropatov, A. Ya., and Shuvalov, V. A. (2000) FEBS Lett., 466, 209–212.CrossRefPubMedGoogle Scholar
  14. 14.
    Yakovlev, A. G., and Shuvalov, V. A. (2000) J. Chin. Chem. Soc., 47, 709–714.Google Scholar
  15. 15.
    Yakovlev, A. G., Shkuropatov, A. Ya., and Shuvalov, V. A. (2002) Biochemistry, 41, 2667–2674.CrossRefPubMedGoogle Scholar
  16. 16.
    Yakovlev, A. G., Shkuropatov, A. Ya., and Shuvalov, V. A. (2002) Biochemistry, 41, 14019–14027.CrossRefPubMedGoogle Scholar
  17. 17.
    Vos, M. H., Rischel, C., Jones, M. R., and Martin, J.-L. (2000) Biochemistry, 39, 8353–8361.CrossRefPubMedGoogle Scholar
  18. 18.
    Yakovlev, A. G., Vasilieva, L. G., Shkuropatov, A. Ya., Bolgarina, T. I., Shkuropatova, V. A., and Shuvalov, V. A. (2003) J. Phys. Chem. A, 107, 8330–8338.CrossRefGoogle Scholar
  19. 19.
    Kuglstatter, A., Hellwig, P., Fritzsch, G., Wachtveitl, J., Oesterhelt, D., Mantele, W., and Michel, H. (1999) FEBS Lett., 463, 169–174.CrossRefPubMedGoogle Scholar
  20. 20.
    Vasilieva, L. G., Bolgarina, T. I., Chatipov, R. A., Shkuropatov, A. Y., and Shuvalov, V. A. (2001) Doklady RAN, 376, 826–829.Google Scholar
  21. 21.
    Shuvalov, V. A., Shkuropatov, A. Y., Kulakova, S. M., Ismailov, M. A., and Shkuropatova, V. A. (1986) Biochim. Biophys. Acta, 849, 337–348.CrossRefGoogle Scholar
  22. 22.
    Michel, H., Epp, O., and Deisenhofer, J. (1986) EMBO J., 5, 2445–2451.PubMedGoogle Scholar
  23. 23.
    Lin, X., Marchison, H. A., Nagarajan, V., Parson, W. W., Allen, J. P., and Williams, J. C. (1994) Proc. Natl. Acad. Sci. USA, 91, 10265–10269.CrossRefPubMedGoogle Scholar
  24. 24.
    Rischel, C., Spiedel, D., Ridge, J. P., Jones, M. R., Breton, J., Lambry, J.-L., Martin, J.-L., and Vos, M. H. (1998) Proc. Natl. Acad. Sci. USA, 95, 12306–12311.CrossRefPubMedGoogle Scholar
  25. 25.
    Beens, H., and Weller, A. (1975) in Organic Molecular Photophysics (Birks, J. B., ed.) Vol. 11, John Willey&Sons, London, pp. 159–215.Google Scholar
  26. 26.
    Plato, M., Lendzian, F., Lubitz, W., Trankle, E., and Mobius, K. (1988) in The Photosynthetic Bacterial Reaction Center: Structure and Dynamics (Breton, J., and Vermeglio, A., eds.) Plenum Press, N.Y.-London, pp. 379–388.Google Scholar
  27. 27.
    Shuvalov, V. A., and Yakovlev, A. G. (1998) Membr. Cell Biol. (Moscow), 12, 563–569.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. G. Yakovlev
    • 1
    Email author
  • L. G. Vasilieva
    • 2
  • A. Y. Shkuropatov
    • 2
  • V. A. Shuvalov
    • 1
    • 2
  1. 1.Department of Photobiophysics, Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations