Advertisement

Biochemistry (Moscow)

, Volume 74, Issue 10, pp 1142–1149 | Cite as

Bacterial production and refolding from inclusion bodies of a “Weak” toxin, a disulfide rich protein

  • E. N. LyukmanovaEmail author
  • M. A. Shulepko
  • R. V. Tikhonov
  • Z. O. Shenkarev
  • A. S. Paramonov
  • A. N. Wulfson
  • I. E. Kasheverov
  • T. L. Ustich
  • Yu. N. Utkin
  • A. S. Arseniev
  • V. I. Tsetlin
  • D. A. DolgikhEmail author
  • M. P. Kirpichnikov
Article

Abstract

The gene for the “weak” toxin of Naja kaouthia venom was expressed in Escherichia coli. “Weak” toxin is a specific inhibitor of nicotine acetylcholine receptor, but mechanisms of interaction of similar neurotoxins with receptors are still unknown. Systems previously elaborated for neurotoxin II from venom of the cobra Naja oxiana were tested for bacterial production of “weak” toxin from N. kaouthia venom. Constructs were designed for cytoplasmic production of N. kaouthia “weak” toxin in the form of a fused polypeptide chain with thioredoxin and for secretion with the leader peptide STII. However, it became possible to obtain “weak” toxin in milligram amounts only within cytoplasmic inclusion bodies. Different approaches for refolding of the toxin were tested, and conditions for optimization of the yield of the target protein during refolding were investigated. The resulting protein was characterized by mass spectrometry and CD and NMR spectroscopy. Experiments on competitive inhibition of 125I-labeled α-bungarotoxin binding to the Torpedo californica electric organ membranes containing the muscle-type nicotine acetylcholine receptor (α12β1γδ) showed the presence of biological activity of the recombinant “weak” toxin close to the activity of the natural toxin (IC50 = 4.3 ± 0.3 and 3.0 ± 0.5 µM, respectively). The interaction of the recombinant toxin with α7 type human neuronal acetylcholine receptor transfected in the GH4C1 cell line also showed the presence of activity close to that of the natural toxin (IC50 31 ± 5.0 and 14.8 ± 1.3 µM, respectively). The developed bacterial system for production of N. kaouthia venom “weak” toxin was used to obtain 15N-labeled analog of the neurotoxin.

Key words

neurotoxins nicotine acetylcholine receptor bacterial expression refolding 

Abbreviations

DTT

dithiothreitol

IC50

inhibition constant indicating that 50% receptor binding sites are blocked

nAChR

nicotine acetylcholine receptor

TCEP

Tris(2-carboxy-ethyl)phosphine hydrochloride

WTX

“weak” toxin

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsetlin, V. I., and Hucho, F. (2004) FEBS Lett., 557, 9–13.CrossRefPubMedGoogle Scholar
  2. 2.
    Unwin, N. (2005) J. Mol. Biol., 346, 967.CrossRefPubMedGoogle Scholar
  3. 3.
    Hogg, R. C., Raggenbass, M., and Bertrand, D. (2003) Rev. Physiol. Biochem. Pharmacol., 147, 1–46.CrossRefPubMedGoogle Scholar
  4. 4.
    Weiland, S., Bertrand, D., and Leonard, S. (2000) Behav. Brain Res., 113, 43–56.CrossRefPubMedGoogle Scholar
  5. 5.
    Nirthanan, S., Gopalakrishnakone, P., Gwee, M. C. E., Khoo, H. E., and Kini, R. M. (2003) Toxicon, 41, 397–407.CrossRefPubMedGoogle Scholar
  6. 6.
    Servent, D., Winckler-Dietrich, V., Hu, H. Y., Kessler, P., Drevet, P., Bertrand, D., and Menez, A. (1997) J. Biol. Chem., 272, 24279–24286.CrossRefPubMedGoogle Scholar
  7. 7.
    Lyukmanova, E. N., Shenkarev, Z. O., Schulga, A. A., Ermolyuk, Y. S., Mordvintsev, D. Y., Utkin, Y. N., Shoulepko, M. A., Hogg, R. C., Bertrand, D., Dolgikh, D. A., Tsetlin, V. I., and Kirpichnikov, M. P. (2007) J. Biol. Chem., 282, 24784–24791.CrossRefPubMedGoogle Scholar
  8. 8.
    Utkin, Y. N., Kukhtina, V. V., Kryukova, E. V., Chiodini, F., Bertrand, D., Methfessel, C., and Tsetlin, V. I. (2001) J. Biol. Chem., 276, 15810–15815.CrossRefPubMedGoogle Scholar
  9. 9.
    Oustitch, T. L., Peters, L. E., Utkin, Yu. N., and Tsetlin, V. I. (2003) UIBMB Life, 55, 43–47.Google Scholar
  10. 10.
    Ogay, A. Y., Rzhevsky, D. I., Murashev, A. N., Tsetlin, V. I., and Utkin, Y. N. (2005) Toxicon, 45, 93–99.CrossRefPubMedGoogle Scholar
  11. 11.
    Skok, M. V., Kalashnik, E. N., Koval, L. N., Tsetlin, V. I., Utkin, Y. N., Changeux, J.-P., and Grailhe, R. (2003) Mol. Pharmacol., 64, 885–889.CrossRefPubMedGoogle Scholar
  12. 12.
    Lyukmanova, E. N., Schulga, A. A., Arsenieva, D. I., Pluzhnikov, K. A., Dolgikh, D. A., Arseniev, A. S., and Kirpichnikov, M. P. (2004) Bioorg. Khim., 30, 30–40.Google Scholar
  13. 13.
    Wang, Y., Jing, L., and Xu, K. (2002) J. Biotechnol., 94, 235–244.CrossRefPubMedGoogle Scholar
  14. 14.
    Drevet, P., Lemaire, C., Gasparini, S., Zinn-Justin, S., Lajeunesse, E., Ducancel, F., Pinkasfeld, S., Courcon, M., Tremeau, O., Boulain, J. C., and Menez, A. (1997) Prot. Expr. Purif., 10, 293–300.CrossRefGoogle Scholar
  15. 15.
    Utkin, Y. N., Kukhtina, V. V., Maslennikov, I. V., Eletsky, A. V., Starkov, V. G., Weise, C., Franke, P., Hucho, F., and Tsetlin, V. I. (2001) Toxicon, 39, 921–927.CrossRefPubMedGoogle Scholar
  16. 16.
    Kukhtina, V. V., Weise, C., Osipov, A. V., Starkov, V. G., Titov, M. I., Esipov, S. E., Ovchinnikova, T. V., Tsetlin, V. I., and Utkin, Yu. N. (2000) Bioorg. Khim., 26, 803–807.PubMedGoogle Scholar
  17. 17.
    Tikhonov, R. V., Pechenov, S. E., Belacheu, I. A., Yakimov, S. A., Klyushnichenko, V. E., Boldireva, E. F., Korobko, V. G., Tunes, H., Thiemann, J. E., Vilela, L., and Wulfson, A. N. (2001) Prot. Exp. Purif., 21, 176–182.CrossRefGoogle Scholar
  18. 18.
    Tikhonov, R. V., Pechenov, S. E., Belacheu, I. A., Yakimov, S. A., Klyushnichenko, V. E., Tunes, H., Thiemann, J. E., Vilela, L., and Wulfson, A. N. (2002) Prot. Exp. Purif., 26, 187–193.CrossRefGoogle Scholar
  19. 19.
    Osipov, A. V., Kasheverov, I. E., Makarova, Y. V., Starkov, V. G., Vorontsova, O. V., Ziganshin, R. Kh., Andreeva, T. V., Serebryakova, M. V., Benoit, A., Hogg, R. C., Bertrand, D., Tsetlin, V. I., and Utkin, Y. N. (2008) J. Biol. Chem., 283, 14571–14580.CrossRefPubMedGoogle Scholar
  20. 20.
    Bocharov, E. V., Lyukmanova, E. N., Ermolyuk, Y. S., Schulga, A. A., Pluzhnikov, K. A., Dolgikh, D. A., Kirpichnikov, M. P., and Arseniev, A. S. (2003) Appl. Magn. Reson., 24, 247–254.CrossRefGoogle Scholar
  21. 21.
    Wulfson, A. N., Tikhonov, R. V., and Pechenov, S. E. (2001) Doklady RAN, 380, 400–403.Google Scholar
  22. 22.
    Getz, E. B., Xiao, M., Chakrabarty, T., Cooke, R., and Selvin, P. R. (1999) Anal. Biochem., 273, 73–80.CrossRefPubMedGoogle Scholar
  23. 23.
    Poh, S. L., Mourier, G., Thai, R., Armugam, A., Molgo, J., Servent, D., Jeyaseelan, K., and Menez, A. (2002) Eur. J. Biochem., 269, 4247–4256.CrossRefPubMedGoogle Scholar
  24. 24.
    Torchinsky, Yu. M. (1977) Sulfur in Proteins [in Russian], Nauka, Moscow.Google Scholar
  25. 25.
    Eletsky, A. V., Maslennikov, I. V., Kukhtina, V. V., Utkin, Yu. N., Tsetlin, V. I., and Arseniev, A. S. (2001) Bioorg. Khim., 27, 89–101.Google Scholar
  26. 26.
    Mordvintsev, D. Yu., Polyak, Ya. L., Kuzmin, D. A., Levtsova, O. V., Tourleigh, Ye. V., Utkin, Yu. N., Shaitan, K. V., and Tsetlin, V. I. (2007) Comput. Biol. Chem., 31, 72–81.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • E. N. Lyukmanova
    • 1
    Email author
  • M. A. Shulepko
    • 1
    • 2
  • R. V. Tikhonov
    • 1
  • Z. O. Shenkarev
    • 1
  • A. S. Paramonov
    • 1
  • A. N. Wulfson
    • 1
  • I. E. Kasheverov
    • 1
  • T. L. Ustich
    • 1
    • 3
  • Yu. N. Utkin
    • 1
  • A. S. Arseniev
    • 1
  • V. I. Tsetlin
    • 1
  • D. A. Dolgikh
    • 1
    Email author
  • M. P. Kirpichnikov
    • 1
    • 2
  1. 1.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Medical Center of Denver UniversityDenverUSA

Personalised recommendations